Spectral emittance measurements of micro/nanostructures in energy conversion: a review

被引:30
作者
Shan, Shiquan [1 ,2 ]
Chen, Chuyang [2 ]
Loutzenhiser, Peter G. [2 ]
Ranjan, Devesh [2 ]
Zhou, Zhijun [1 ]
Zhang, Zhuomin M. [2 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
concentrating solar power (CSP); emittance measurements; high temperature; micro; nanostructure; selective absorber; selective emitter; thermophotovoltaics (TPV); SOLAR SELECTIVE ABSORBERS; COHERENT THERMAL EMISSION; HIGH-TEMPERATURE; PHOTONIC-CRYSTAL; THERMOPHOTOVOLTAIC GENERATION; SOLID MATERIALS; MAGNETIC POLARITONS; RADIATIVE EMITTANCE; SURFACE; EFFICIENCY;
D O I
10.1007/s11708-020-0693-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Micro/nanostructures play a key role in tuning the radiative properties of materials and have been applied to high-temperature energy conversion systems for improved performance. Among the various radiative properties, spectral emittance is of integral importance for the design and analysis of materials that function as radiative absorbers or emitters. This paper presents an overview of the spectral emittance measurement techniques using both the direct and indirect methods. Besides, several micro/nanostructures are also introduced, and a special emphasis is placed on the emissometers developed for characterizing engineered micro/nanostructures in high-temperature applications (e.g., solar energy conversion and thermophotovoltaic devices). In addition, both experimental facilities and measured results for different materials are summarized. Furthermore, future prospects in developing instrumentation and micro/nanostructured surfaces for practical applications are also outlined. This paper provides a comprehensive source of information for the application of micro/nanostructures in high-temperature energy conversion engineering.
引用
收藏
页码:482 / 509
页数:28
相关论文
共 121 条
[1]   Emissivity Measurement Under Vacuum from to and from to at PTB [J].
Adibekyan, A. ;
Monte, C. ;
Kehrt, M. ;
Gutschwager, B. ;
Hollandt, J. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2015, 36 (2-3) :283-289
[2]  
[Anonymous], 2015, Thermal radiation heat transfer, DOI DOI 10.1201/B18835
[3]   Emissivity of Elgiloy and pure niobium at high temperature for the Solar Orbiter mission [J].
Balat-Pichelin, M. ;
Sans, J. L. ;
Escape, C. ;
Combes, H. .
VACUUM, 2017, 142 :87-95
[4]   Microscale radiation in thermophotovoltaic devices - A review [J].
Basu, S. ;
Chen, Y.-B. ;
Zhang, Z. M. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :689-716
[5]   Thermal radiation properties of different metals [J].
Bauer, Wolfgang ;
Moldenhauer, Alexander ;
Oertel, Hansjochen .
THERMOSENSE XXVIII, 2006, 6205
[6]   Solar thermal power plants - A review of configurations and performance comparison [J].
Behar, Omar .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 92 :608-627
[7]  
Bermel P., 2012, Annu. Rev. Heat Transf, V15, P231, DOI [10.1615/AnnualRevHeatTransfer.2012004119, DOI 10.1615/ANNUALREVHEATTRANSFER.2012004119]
[8]   Accelerated aging of a solar absorber material subjected to highly concentrated solar flux [J].
Boubault, A. ;
Claudet, B. ;
Faugeroux, O. ;
Olalde, G. .
PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 :1673-1681
[9]   Temperature-resolved infrared spectral emissivity of SiC and Pt-10Rh for temperatures up to 900°C [J].
Cagran, Claus P. ;
Hanssen, Leonard M. ;
Noorma, Mart ;
Gura, Alex V. ;
Mekhontsev, Sergey N. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2007, 28 (02) :581-597
[10]   IN SITU MEASUREMENTS OF SPECTRAL EMISSIVITY OF MATERIALS FOR VERY HIGH TEMPERATURE REACTORS [J].
Cao, G. ;
Weber, S. J. ;
Martin, S. O. ;
Malaney, T. L. ;
Slattery, S. R. ;
Anderson, M. H. ;
Sridharan, K. ;
Allen, T. R. .
NUCLEAR TECHNOLOGY, 2011, 175 (02) :460-467