Fabrication of ZnO Nanorods by Atmospheric-Pressure Solid-Source CVD Using Ethanol-Assisted Low-Temperature Vaporization

被引:1
|
作者
Miyamoto, Sawako [1 ,2 ]
Hasegawa, Tetsuya [1 ]
Takahashi, Hiroyuki [3 ]
Yonezawa, Tetsu [3 ]
Kiyono, Hajime [2 ]
Yanase, Takashi [4 ]
Nagahama, Taro [2 ]
Shimada, Toshihiro [2 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Chem, Bunkyo Ku, Tokyo 1130033, Japan
[2] Hokkaido Univ, Div Mat Chem, Fac Engn, Sapporo, Hokkaido 0608628, Japan
[3] Hokkaido Univ, Div Mat Sci & Engn, Fac Engn, Sapporo, Hokkaido 0608628, Japan
[4] Hokkaido Univ, Frontier Chem Ctr, Fac Engn, Sapporo, Hokkaido 0608628, Japan
关键词
THIN-FILMS; GROWTH; NANOWIRES; DEVICES; ARRAY;
D O I
10.1246/bcsj.20120202
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a method to produce vapor species from ZnO powder for the fabrication of ZnO nanorods. Mixing ethanol vapor with the inert carrier gas substantially lowered the gasification temperature of ZnO. c Axis-aligned ZnO nanorods were obtained by dispersing gold nanoparticles on Si substrates. The growth was identified as a vapor-solid (VS) mechanism. Choice of the substrate materials and their surface morphology were both critically important to control the shapes and orientation of grown ZnO.
引用
收藏
页码:1287 / 1292
页数:6
相关论文
共 25 条
  • [1] LOW-TEMPERATURE, ATMOSPHERIC-PRESSURE CVD USING HEXAMETHYLDISILOXANE AND OZONE
    FUJINO, K
    NISHIMOTO, Y
    TOKUMASU, N
    MAEDA, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (08) : 2282 - 2287
  • [2] LOW-TEMPERATURE AND ATMOSPHERIC-PRESSURE CVD USING POLYSILOXANE, OMCTS, AND OZONE
    FUJINO, K
    NISHIMOTO, Y
    TOKUMASU, N
    MAEDA, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (12) : 3727 - 3732
  • [3] SILICON DIOXIDE DEPOSITION BY ATMOSPHERIC-PRESSURE AND LOW-TEMPERATURE CVD USING TEOS AND OZONE
    FUJINO, K
    NISHIMOTO, Y
    TOKUMASU, N
    MAEDA, K
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (09) : 2883 - 2887
  • [4] Structural and optical properties of ZnO films grown by atmospheric-pressure CVD methods using different source materials
    Terasako, Tomoaki
    Taira, Keisuke
    Taniguchi, Kouta
    Yagi, Masakazu
    Shirakata, Sho
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 2, 2011, 8 (02): : 509 - 511
  • [5] Growth of InP on GaAs (001) by hydrogen-assisted low-temperature solid-source molecular beam epitaxy
    Postigo, P. A.
    Suarez, F.
    Sanz-Hervas, A.
    Sangrador, J.
    Fonstad, C. G.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (01)
  • [6] Growth of InP on GaAs (001) by hydrogen-assisted low-temperature solid-source molecular beam epitaxy
    Postigo, P.A.
    Suárez, F.
    Sanz-Hervás, A.
    Sangrador, J.
    Fonstad, C.G.
    Journal of Applied Physics, 2008, 103 (01):
  • [7] Sterilization of Polyethylene Terephthalate Track Membranes Using Low-temperature Atmospheric-pressure Plasma
    Filippova E.O.
    Calanda N.S.
    Pichugin V.F.
    Aleinik A.N.
    Guriev A.M.
    Belousov M.V.
    Biomedical Engineering, 2017, 51 (2) : 111 - 115
  • [8] Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device
    Chang, Ya-Ting
    Chen, Gin
    JOURNAL OF DENTAL SCIENCES, 2016, 11 (01) : 65 - 71
  • [9] Low-Temperature Atmospheric-Pressure Plasmas as a Source of Reactive Oxygen and Nitrogen Species for Chronic Wound Disinfection
    Nosenko, Tetyana
    Shimizu, Tetsuji
    Steffes, Bernd
    Zimmermann, Julia
    Stolz, Wilhelm
    Schmidt, Hans-Ulrich
    Isbary, Georg
    Pompl, Rene
    Bunk, Wolfram
    Fujii, Shuitsu
    Morfill, Gregor Eugen
    FREE RADICAL BIOLOGY AND MEDICINE, 2009, 47 : S128 - S128
  • [10] Surface modification of Nafion membranes using atmospheric-pressure low-temperature plasmas for electrochemical applications
    Kim, Jong Hoon
    Sohn, Juhee
    Cho, Jin Hoon
    Choi, Myeong Yeol
    Koo, Il Gyo
    Lee, Woong Moo
    PLASMA PROCESSES AND POLYMERS, 2008, 5 (04) : 377 - 385