Seidel elements and mirror transformations

被引:16
作者
Gonzalez, Eduardo [1 ]
Iritani, Hiroshi [2 ]
机构
[1] UMASS Boston, Dept Math, Boston, MA 02125 USA
[2] Kyoto Univ, Grad Sch Sci, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2012年 / 18卷 / 03期
基金
美国国家科学基金会;
关键词
Seidel elements; Mirror transformations; Batyrev relations; Fano toric variety; Nef toric variety; QUANTUM COHOMOLOGY; HOMOLOGY;
D O I
10.1007/s00029-011-0080-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this article is to give a precise relation between the mirror symmetry transformation of Givental and the Seidel elements for a smooth projective toric variety X with -K (X) nef. We show that the Seidel elements entirely determine the mirror transformation and mirror coordinates.
引用
收藏
页码:557 / 590
页数:34
相关论文
共 19 条
  • [1] [Anonymous], 1998, Progr. Math., V160, P141
  • [2] [Anonymous], 2010, AMS GRADUATE STUDIES
  • [3] Audin M., 2004, Torus actions on symplectic manifolds
  • [4] BATYREV VV, 1993, ASTERISQUE, P9
  • [5] COMPUTING GENUS-ZERO TWISTED GROMOV-WITTEN INVARIANTS
    Coates, Tom
    Corti, Alessio
    Iritani, Hiroshi
    Tseng, Hsian-Hua
    [J]. DUKE MATHEMATICAL JOURNAL, 2009, 147 (03) : 377 - 438
  • [6] FIXED POINTS AND TORSION ON KAHLER MANIFOLDS
    FRANKEL, T
    [J]. ANNALS OF MATHEMATICS, 1959, 70 (01) : 1 - 8
  • [7] Fukaya K., 10091648V1 ARXIV
  • [8] GIVENTAL A., 1996, INT MATH RES NOT IMR, P613, DOI [10.1155/S1073792896000414, DOI 10.1155/S1073792896000414]
  • [9] Quantum cohomology and S1-actions with isolated fixed points
    Gonzalez, E
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (07) : 2927 - 2948
  • [10] Guillemin V., 1994, Progress in Math, V122