Deterministic asymptotic Cramer-Rao bound for the multidimensional harmonic model

被引:21
|
作者
Boyer, Remy [1 ]
机构
[1] Univ Paris Sud, CNRS, Signaux & Syst Lab, Supelec, F-91190 Gif Sur Yvette, France
关键词
parameter estimation; multidimensional signal processing; harmonic model; Cramer-Rao bound;
D O I
10.1016/j.sigpro.2008.06.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The harmonic model sampled on a P-dimensional grid contaminated by an additive white Gaussian noise has attracted considerable attention with a variety of applications. This model has a natural interpretation in a P-order tensorial framework and an important question is to evaluate the theoretical lowest variance on the model parameter (angular-frequency, real amplitude and initial phase) estimation. A standard Mathematical tool to tackle this question is the Cramer-Rao bound (CRB) which is a lower bound on the variance of an unbiased estimator, based on Fisher information. So, the aim of this work is to derive and analyze closed-form expressions of the deterministic asymptotic CRB associated with the M-order harmonic model of dimension P with P>I. In particular, we analyze this bound with respect to the variation of parameter P. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2869 / 2877
页数:9
相关论文
共 50 条
  • [31] Evaluating the Bayesian Cramer-Rao Bound for multiple model filtering
    Svensson, Lennart
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1775 - 1782
  • [32] The asymptotic Cramer-Rao bound for 2-D superimposed exponential signals
    Mitra, A
    Stoica, P
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2002, 13 (03) : 317 - 331
  • [33] COMPACT CRAMER-RAO BOUND EXPRESSION FOR AN EXTENDED SIGNAL MODEL
    LEE, HB
    JACHNER, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) : 2868 - 2870
  • [34] Misspecified Cramer-Rao Bound for Multipath Model in MIMO Radar
    Levy-Israel, Moshe
    Bilik, Igal
    Tabrikian, Joseph
    2022 IEEE 12TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2022, : 81 - 85
  • [35] MODEL SELECTION VIA MISSPECIFIED CRAMER-RAO BOUND MINIMIZATION
    Rosenthal, Nadav E.
    Tabrikian, Joseph
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5762 - 5766
  • [36] On the Cramer-Rao bound for model-based spectral analysis
    Sando, S
    Mitra, A
    Stoica, P
    IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (02) : 68 - 71
  • [37] SELECTIVE CRAMER-RAO BOUND FOR ESTIMATION AFTER MODEL SELECTION
    Meir, Elad
    Routtenberg, Tirza
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 757 - 761
  • [38] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [40] Quantum Cramer-Rao Bound and Parity Measurement
    Chiruvelli, Aravind
    Lee, Hwang
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION III, 2010, 7611