Deterministic asymptotic Cramer-Rao bound for the multidimensional harmonic model

被引:21
|
作者
Boyer, Remy [1 ]
机构
[1] Univ Paris Sud, CNRS, Signaux & Syst Lab, Supelec, F-91190 Gif Sur Yvette, France
关键词
parameter estimation; multidimensional signal processing; harmonic model; Cramer-Rao bound;
D O I
10.1016/j.sigpro.2008.06.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The harmonic model sampled on a P-dimensional grid contaminated by an additive white Gaussian noise has attracted considerable attention with a variety of applications. This model has a natural interpretation in a P-order tensorial framework and an important question is to evaluate the theoretical lowest variance on the model parameter (angular-frequency, real amplitude and initial phase) estimation. A standard Mathematical tool to tackle this question is the Cramer-Rao bound (CRB) which is a lower bound on the variance of an unbiased estimator, based on Fisher information. So, the aim of this work is to derive and analyze closed-form expressions of the deterministic asymptotic CRB associated with the M-order harmonic model of dimension P with P>I. In particular, we analyze this bound with respect to the variation of parameter P. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2869 / 2877
页数:9
相关论文
共 50 条
  • [21] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [22] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [23] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002
  • [24] LIKELIHOOD SENSITIVITY AND THE CRAMER-RAO BOUND
    GARDNER, WA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (04) : 491 - 491
  • [25] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    WIJSMAN, RA
    ANNALS OF STATISTICS, 1973, 1 (03): : 538 - 542
  • [26] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [27] The Constrained Misspecified Cramer-Rao Bound
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 718 - 721
  • [28] Coarrays, MUSIC, and the Cramer-Rao Bound
    Wang, Mianzhi
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 933 - 946
  • [29] A variational interpretation of the Cramer-Rao bound
    Fauss, Michael
    Dytso, Alex
    Poor, H. Vincent
    SIGNAL PROCESSING, 2021, 182