Deterministic asymptotic Cramer-Rao bound for the multidimensional harmonic model

被引:21
作者
Boyer, Remy [1 ]
机构
[1] Univ Paris Sud, CNRS, Signaux & Syst Lab, Supelec, F-91190 Gif Sur Yvette, France
关键词
parameter estimation; multidimensional signal processing; harmonic model; Cramer-Rao bound;
D O I
10.1016/j.sigpro.2008.06.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The harmonic model sampled on a P-dimensional grid contaminated by an additive white Gaussian noise has attracted considerable attention with a variety of applications. This model has a natural interpretation in a P-order tensorial framework and an important question is to evaluate the theoretical lowest variance on the model parameter (angular-frequency, real amplitude and initial phase) estimation. A standard Mathematical tool to tackle this question is the Cramer-Rao bound (CRB) which is a lower bound on the variance of an unbiased estimator, based on Fisher information. So, the aim of this work is to derive and analyze closed-form expressions of the deterministic asymptotic CRB associated with the M-order harmonic model of dimension P with P>I. In particular, we analyze this bound with respect to the variation of parameter P. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2869 / 2877
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1999, Mathematical Methods of Statistics
[2]   Nonmatrix Cramer-Rao bound expressions for high-resolution frequency estimators [J].
Dilaveroglu, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (02) :463-474
[3]   Cramer-Rao bound on the estimation accuracy of complex-valued homogeneous Gaussian random fields [J].
Francos, JM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) :710-724
[4]  
Haardt A. R. M., 2004, HIGHRESOLUTION ROBUS, P255
[5]   Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems [J].
Haardt, M ;
Nossek, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) :161-169
[6]  
Harshman R. A., 1970, UCLA Work. Papers Phonetics, DOI DOI 10.1134/S0036023613040165
[7]   ESTIMATING 2-DIMENSIONAL FREQUENCIES BY MATRIX ENHANCEMENT AND MATRIX PENCIL [J].
HUA, YB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (09) :2267-2280
[8]   Almost-sure identifiability of multidimensional harmonic retrieval [J].
Jiang, T ;
Sidiropoulos, ND ;
ten Berge, JMF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (09) :1849-1859
[9]   An eigenvector-based approach for multidimensional frequency estimation with improved identifiability [J].
Liu, Jun ;
Liu, Xiangqian .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (12) :4543-4556
[10]   Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays [J].
Liu, XQ ;
Sidiropoulos, ND .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (09) :2074-2086