Deterministic asymptotic Cramer-Rao bound for the multidimensional harmonic model

被引:21
|
作者
Boyer, Remy [1 ]
机构
[1] Univ Paris Sud, CNRS, Signaux & Syst Lab, Supelec, F-91190 Gif Sur Yvette, France
关键词
parameter estimation; multidimensional signal processing; harmonic model; Cramer-Rao bound;
D O I
10.1016/j.sigpro.2008.06.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The harmonic model sampled on a P-dimensional grid contaminated by an additive white Gaussian noise has attracted considerable attention with a variety of applications. This model has a natural interpretation in a P-order tensorial framework and an important question is to evaluate the theoretical lowest variance on the model parameter (angular-frequency, real amplitude and initial phase) estimation. A standard Mathematical tool to tackle this question is the Cramer-Rao bound (CRB) which is a lower bound on the variance of an unbiased estimator, based on Fisher information. So, the aim of this work is to derive and analyze closed-form expressions of the deterministic asymptotic CRB associated with the M-order harmonic model of dimension P with P>I. In particular, we analyze this bound with respect to the variation of parameter P. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2869 / 2877
页数:9
相关论文
共 50 条
  • [1] Asymptotic Cramer-Rao bound for multi-dimensional harmonic models
    Sajjad, Naheed
    Boyer, Remy
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1041 - +
  • [2] A nonparametric asymptotic version of the Cramer-Rao bound
    Pfanzagl, J
    STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 : 499 - 517
  • [3] DETERMINISTIC CRAMER-RAO BOUND FOR SCANNING RADAR SENSING
    Zhang, Yongchao
    Zhang, Yin
    Huang, Yulin
    Yang, Jianyu
    Yang, Xiaobo
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9208 - 9211
  • [4] Posterior uncertainty, asymptotic law and Cramer-Rao bound
    Au, Siu-Kui
    Li, Binbin
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (03):
  • [5] Statistical resolution limit for the multidimensional harmonic retrieval model: hypothesis test and Cramer-Rao Bound approaches
    El Korso, Mohammed Nabil
    Boyer, Remy
    Renaux, Alexandre
    Marcos, Sylvie
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011,
  • [6] Cramer-Rao lower bound for harmonic and subharmonic estimation
    Chen, Zhili
    Nowrouzian, Behrouz
    Zarowski, Christopher J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2532 - 2535
  • [7] POSTERIOR CRAMER-RAO BOUND FOR ADAPTIVE HARMONIC RETRIEVAL
    TICHAVSKY, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (05) : 1299 - 1302
  • [8] Cramer-Rao Bound for a Sparse Complex Model
    Florescu, Anisia
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Ciochina, Silviu
    2014 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2014,
  • [9] On the asymptotic analysis of Cramer-Rao bound for time delay estimation
    Yin, CY
    Xu, SJ
    Wang, DJ
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 109 - 112
  • [10] On the asymptotic analysis of Cramer-Rao bound for time delay estimation
    Hefei Electronic Engineering Inst, China
    Int Conf Signal Process Proc, (109-112):