Hardy-Littlewood maximal operator on reflexive variable Lebesgue spaces over spaces of homogeneous type

被引:0
作者
Karlovich, Alexei [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal
关键词
Hardy-Littlewood maximal operator; variable Lebesgue space; space of homogeneous type; dyadic cubes; PROPERTY;
D O I
10.4064/sm180816-16-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Hardy-Littlewood maximal operator is bounded on a reflexive variable Lebesgue space L-p(.) over a space of homogeneous type (X, d, mu) if and only if it is bounded on its dual space L-p'(.), where 1/p(x) + 1/p' (x) = 1 for x is an element of X. This result extends the corresponding result of Lars Diening from the Euclidean setting of R-n to the setting of spaces (X, d, mu) of homogeneous type.
引用
收藏
页码:149 / 178
页数:30
相关论文
共 50 条
[21]   Generalization of Hardy-Littlewood maximal inequality with variable exponent [J].
Weisz, Ferenc .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) :1687-1705
[22]   Weighted norm inequalities for the maximal operator on variable Lebesgue spaces [J].
Cruz-Uribe, D. ;
Fiorenza, A. ;
Neugebauer, C. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :744-760
[23]   Sharp weighted bounds for the Hardy-Littlewood maximal operators on Musielak-Orlicz spaces [J].
Lin, Haibo .
ARCHIV DER MATHEMATIK, 2016, 106 (03) :275-284
[24]   Generalized potentials in variable exponent Lebesgue spaces on homogeneous spaces [J].
Hajibayov, Mubariz G. ;
Samko, Stefan .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (01) :53-66
[25]   A new approach for Hardy spaces with variable exponents on spaces of homogeneous type [J].
Tan, Jian .
FILOMAT, 2023, 37 (23) :7719-7739
[26]   Sharp Inequalities for the Hardy-Littlewood Maximal Operator on Finite Directed Graphs [J].
Zhang, Xiao ;
Liu, Feng ;
Zhang, Huiyun .
MATHEMATICS, 2021, 9 (09)
[27]   A NEW QUANTITATIVE TWO WEIGHT THEOREM FOR THE HARDY-LITTLEWOOD MAXIMAL OPERATOR [J].
Perez, Carlos ;
Rela, Ezequiel .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (02) :641-655
[28]   Pointwise estimate for the Hardy-Littlewood maximal operator on the orbits of contractive mappings [J].
Aimar, Hugo ;
Carena, Marilina .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) :626-636
[29]   A necessary condition for the boundedness of the maximal operator on Lp(.) over reverse doubling spaces of homogeneous type [J].
Karlovych, O. ;
Shalukhina, A. .
ANALYSIS MATHEMATICA, 2025, 51 (01) :241-248
[30]   A Complete Real-Variable Theory of Hardy Spaces on Spaces of Homogeneous Type [J].
He, Ziyi ;
Han, Yongsheng ;
Li, Ji ;
Liu, Liguang ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (05) :2197-2267