Star-critical Ramsey Numbers of Wheels Versus Odd Cycles

被引:0
作者
Liu, Yu-chen [1 ]
Chen, Yao-jun [2 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2022年 / 38卷 / 04期
基金
中国国家自然科学基金;
关键词
Ramsey number; critical graph; star-critical Ramsey number; wheel; cycle; GENERALIZED FANS; GRAPHS;
D O I
10.1007/s10255-022-1023-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-1,K- (k) be a star of order k + 1 and K-n coproduct K-1,K- (k) the graph obtained from a complete graph K-n and an additional vertex v by joining v to k vertices of K-n. For graphs G and H, the star-critical Ramsey number r(*)(G, H) is the minimum integer k such that any red/blue edge-coloring of Kr-1 coproduct K-1,K- k contains a red copy of G or a blue copy of H, where r is the classical Ramsey number R(G, H). Let C-m denote a cycle of order m and W-n a wheel of order n + 1. Hook (2010) proved that r(*) (W-n, C-3) = n + 3 for n >= 6. In this paper, we show that r(*) (W-n, C-m) = n + 3 for m odd, m >= 5 and n >= 3(m - 1)/2 + 2.
引用
收藏
页码:916 / 924
页数:9
相关论文
共 26 条
  • [1] A sufficient condition for all short cycles
    Brandt, S
    [J]. DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 63 - 66
  • [2] Brandt S, 1998, J GRAPH THEOR, V27, P141, DOI 10.1002/(SICI)1097-0118(199803)27:3<141::AID-JGT3>3.3.CO
  • [3] 2-D
  • [4] GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL
    BURR, SA
    ERDOS, P
    [J]. JOURNAL OF GRAPH THEORY, 1983, 7 (01) : 39 - 51
  • [5] BURR SA, 1981, J LOND MATH SOC, V24, P405
  • [6] Dirac G.A., 1952, P LOND MATH SOC, V3, P69, DOI DOI 10.1112/PLMS/S3-2.1.69
  • [7] Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930
  • [8] ERDOS P, 1992, COLLOQ MATH, V60, P219
  • [9] Erdos P., 1984, C MATH SOC J BOLYAI, P247
  • [10] Erdos P., 1959, ACTA MATH ACAD SCI H, V10, P337, DOI DOI 10.1007/BF02024498