Edge-partitions of graphs of nonnegative characteristic and their game coloring numbers

被引:9
|
作者
Wang, WF [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
graph of nonnegative characteristic; game coloring number; girth; cycle; edge-decomposition;
D O I
10.1016/j.disc.2005.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of nonnegative characteristic and let g(G) and Delta(G) be its girth and maximum degree, respectively. We show that G has an edge-partition into a forest and a subgraph H so that (1) Delta(H) <= 1 if g(G) >= 11; (2) Delta(H) <= 2 if g(G) >= 7; (3) Delta (H) <= 4 if either g(G) >= 5 or G does not contain 4-cycles and 5 -cycles; (4) Delta(H)<= 6 if G does not contain 4-cycles. These results are applied to find the following upper bounds for the game coloring number col(g) (G) of G: (1) col(g) (G) <= 5 if g (G) >= 11; (2) colg (G) <= 6 if g(G) >= 7; (3) colg(G) <= 8 if either g(G) >= 5 or G contains no 4-cycles and 5-cycles; (4) col(g)(G) <= 10 if G does not contain 4-cycles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [21] Class Ⅰ graphs of nonnegative characteristic without special cycles
    HUANG Dan-jun WANG Wei-fan Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2012, (03) : 320 - 328
  • [22] Vertex partitions of r-edge-colored graphs
    Jin Ze-min
    Li Xue-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2008, 23 (01) : 120 - 126
  • [23] Vertex partitions of r-edge-colored graphs
    JIN Ze-min~(1
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2008, (01) : 120 - 126
  • [24] Local conditions for planar graphs of acyclic edge coloring
    Zhang, Wenwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (02) : 721 - 738
  • [25] Acyclic edge coloring of 2-degenerate graphs
    Basavaraju, Manu
    Chandran, L. Sunil
    JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 1 - 27
  • [26] Local conditions for planar graphs of acyclic edge coloring
    Wenwen Zhang
    Journal of Applied Mathematics and Computing, 2022, 68 : 721 - 738
  • [27] Acyclic Edge Coloring of IC-planar Graphs
    Song, Wen-yao
    Duan, Yuan-yuan
    Wang, Juan
    Miao, Lian-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (03): : 581 - 589
  • [28] Acyclic edge coloring of planar graphs with large girth
    Yu, Dongxiao
    Hou, Jianfeng
    Liu, Guizhen
    Liu, Bin
    Xu, Lan
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5196 - 5200
  • [29] Class I graphs of nonnegative characteristic without special cycles
    Dan-jun Huang
    Wei-fan Wang
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 320 - 328
  • [30] Class I graphs of nonnegative characteristic without special cycles
    Huang Dan-jun
    Wang Wei-fan
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 320 - 328