GLOBAL STABILIZATION OF A COUPLED SYSTEM OF TWO GENERALIZED KORTEWEG-DE VRIES TYPE EQUATIONS POSED ON A FINITE DOMAIN

被引:8
作者
Nina, Dugan [1 ]
Pazoto, Ademir F. [1 ]
Rosier, Lionel [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
[2] CNRS, INRIA, UHP, Inst Elie Carton,UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Exponential Decay; Korteweg-de Vries equation; Stabilization; CONTROLLABILITY;
D O I
10.3934/mcrf.2011.1.353
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study the internal stabilization of a coupled system of two generalized Korteweg-de Vries equations under the effect of a localized damping term. The exponential stability, as well as, the global existence of weak solutions are investigated when the exponent in the nonlinear term ranges over the interval [1,4) . To obtain the decay we use multiplier techniques combined with compactness arguments and reduce the problem to prove a unique continuation property for weak solutions. Here, the unique continuation is obtained via the usual Carleman estimate.
引用
收藏
页码:353 / 389
页数:37
相关论文
共 23 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]   Stability and instability of solitary waves for a nonlinear dispersive system [J].
Alarcon, E ;
Angulo, J ;
Montenegro, JF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (08) :1015-1035
[3]  
[Anonymous], 1998, An Introduction to Semilinear Evolution Equations
[4]  
Bisognin E., 2003, Adv. Differ. Equ, V8, P443
[5]   A MODEL SYSTEM FOR STRONG INTERACTION BETWEEN INTERNAL SOLITARY WAVES [J].
BONA, JL ;
PONCE, G ;
SAUT, JC ;
TOM, MM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (02) :287-313
[6]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[7]  
Davila M., 1994, THESIS FEDERAL U RIO
[8]  
GEAR JA, 1984, STUD APPL MATH, V70, P235
[9]   On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping [J].
Linares, F. ;
Pazoto, A. F. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (05) :1515-1522
[10]  
Linares F, 2004, COMMUN PUR APPL ANAL, V3, P417