Tunnel junction for long-wavelength vertical-cavity surface-emitting lasers

被引:1
|
作者
Sekiguchi, S [1 ]
Kimura, T [1 ]
Okazaki, G [1 ]
Miyamoto, T [1 ]
Koyama, F [1 ]
Iga, K [1 ]
机构
[1] Tokyo Inst Technol, Precis & Intelligence Lab, Microsyst Res Ctr, Midori Ku, Yokohama, Kanagawa 2268503, Japan
关键词
long-wavelength VCSEL; tunnel junction; metalorganic chemical vapor deposition; carbon-doped aluminum arsenide;
D O I
10.1143/JJAP.40.5909
中图分类号
O59 [应用物理学];
学科分类号
摘要
To improve the performance of long-wavelength vertical-cavity surface-emitting lasers (VCSELs), we performed an extensive study of tunnel junctions for current injection and confinement. The introduction of a tunnel junction in long-wavelength VCSELs can substantially improve the current injection scheme, because an n-type material is utilized in the p-side region by inserting a tunnel junction. We fabricated long-wavelength lasers with a tunnel junction formed by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylphosphine (TBP) and tertiarybutylarsine (TBAs), and confirmed the current homogenization effect. We also proposed and fabricated a current confinement structure by means of a simple fabrication process using a tunnel junction, i.e., the automatically formed tunneling aperture (AFTA). The AFTA, has a tunnel junction aperture and can be formed automatically during electrode thermal annealing. We investigated the formation condition of the AFTA by varying the annealing temperature and time. We performed secondary ion mass spectroscopy (SIMS) and tunneling electron microscopy (TEM) of an annealed tunnel junction in order to understand the formation of AFTA.
引用
收藏
页码:5909 / 5913
页数:5
相关论文
共 50 条
  • [31] Stokes parameters and hybridization of optical modes in long-wavelength vertical-cavity surface-emitting lasers (VCSELs)
    Volet, Nicolas
    Dwir, Benjamin
    Mutter, Lukas
    Iakovlev, Vladimir
    Caliman, Andrei
    Mereuta, Alexandru
    Sirbu, Alexei
    Suruceanu, Grigore
    Kapon, Eli
    2014 24TH IEEE INTERNATIONAL SEMICONDUCTOR LASER CONFERENCE (ISLC 2014), 2014, : 108 - 110
  • [32] Polarized optical injection in long-wavelength vertical-cavity surface emitting lasers
    Hurtado, A.
    Schires, K.
    Khan, N.
    Al-Seyab, R.
    Henning, I. D.
    Adams, M. J.
    INTEGRATED PHOTONICS: MATERIALS, DEVICES, AND APPLICATIONS, 2011, 8069
  • [33] 1 550 nm long-wavelength vertical-cavity surface emitting lasers
    Liu L.-J.
    Wu Y.-D.
    Wang Y.
    An J.-M.
    Hu X.-W.
    Optoelectronics Letters, 2018, 14 (5) : 342 - 345
  • [34] 1 550 nm long-wavelength vertical-cavity surface emitting lasers
    刘丽杰
    吴远大
    王玥
    安俊明
    胡雄伟
    Optoelectronics Letters, 2018, 14 (05) : 342 - 345
  • [35] Athermalization of the Lasing Wavelength in Vertical-Cavity Surface-Emitting Lasers
    Persson, Lars
    Hjort, Filip
    Cardinali, Giulia
    Enslin, Johannes
    Kolbe, Tim
    Wernicke, Tim
    Kneissl, Michael
    Ciers, Joachim
    Haglund, Asa
    LASER & PHOTONICS REVIEWS, 2023, 17 (08)
  • [36] High-Speed Buried Tunnel Junction Vertical-Cavity Surface-Emitting Lasers
    Hofmann, Werner
    IEEE PHOTONICS JOURNAL, 2010, 2 (05): : 802 - 815
  • [37] DYNAMIC WAVELENGTH SHIFT OF VERTICAL-CAVITY SURFACE-EMITTING LASERS
    MUKAIHARA, T
    ARAKI, M
    MAEKAWA, H
    HAYASHI, Y
    OHNOKI, N
    KOYAMA, F
    IGA, K
    ELECTRONICS LETTERS, 1994, 30 (20) : 1677 - 1678
  • [38] Vertical-cavity surface-emitting lasers
    Lear, KL
    Jones, ED
    MRS BULLETIN, 2002, 27 (07) : 497 - 497
  • [39] Vertical-Cavity Surface-Emitting Lasers
    Kevin L. Lear
    Eric D. Jones
    MRS Bulletin, 2002, 27 : 497 - 501
  • [40] The Effect of a Saturable Absorber in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers Fabricated by Wafer Fusion Technology
    Blokhin, S. A.
    Bobrov, M. A.
    Blokhin, A. A.
    Vasil'ev, A. P.
    Kuz'menkov, A. G.
    Maleev, N. A.
    Rochas, S. S.
    Gladyshev, A. G.
    Babichev, A., V
    Novikov, I. I.
    Karachinsky, L. Ya
    Denisov, D., V
    Voropaev, K. O.
    Ionov, A. S.
    Egorov, A. Yu
    Ustinov, V. M.
    TECHNICAL PHYSICS LETTERS, 2020, 46 (12) : 1257 - 1262