Hybrid 11C-MET PET/MRI Combined With "Machine Learning" in Glioma Diagnosis According to the Revised Glioma WHO Classification 2016

被引:38
作者
Kebir, Sied [1 ,2 ,3 ,4 ,5 ]
Weber, Manuel [4 ,5 ,6 ]
Lazaridis, Lazaros [1 ,4 ,5 ]
Deuschl, Cornelius [7 ]
Schmidt, Teresa [1 ,4 ,5 ]
Moenninghoff, Christoph [8 ]
Keyvani, Kathy [9 ]
Umutlu, Lale [7 ]
Pierscianek, Daniela [4 ,5 ,9 ]
Forsting, Michael [7 ]
Sure, Ulrich [4 ,5 ,9 ]
Stuschke, Martin [10 ]
Kleinschnitz, Christoph [11 ]
Scheffler, Bjoern [2 ,3 ,4 ,5 ]
Colletti, Patrick M. [12 ]
Rubello, Domenico [13 ]
Rischpler, Christoph [4 ,5 ,6 ]
Glas, Martin [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Duisburg Essen, Univ Hosp Essen, Div Clin Neurooncol, Dept Neurol, D-45147 Essen, Germany
[2] Univ Duisburg Essen, Univ Hosp Essen, DKFZ Div Translat Neurooncol, West German Canc Ctr WTZ, Essen, Germany
[3] Partner Site Univ Hosp Essen, German Canc Consortium, Translat Oncol, Essen, Germany
[4] Univ Duisburg Essen, Univ Hosp Essen, West German Canc Ctr WTZ, Essen, Germany
[5] Partner Site Univ Hosp Essen, German Canc Consortium, Essen, Germany
[6] Univ Duisburg Essen, Univ Hosp Essen, Dept Nucl Med, Essen, Germany
[7] Univ Duisburg Essen, Univ Hosp Essen, Inst Diagnost & Intervent Radiol & Neuroradiol, Essen, Germany
[8] Univ Duisburg Essen, Univ Hosp Essen, Dept Neuropathol, Essen, Germany
[9] Univ Duisburg Essen, Univ Hosp Essen, Dept Neurosurg, Essen, Germany
[10] Univ Duisburg Essen, Univ Hosp Essen, Dept Radiotherapy, Essen, Germany
[11] Univ Duisburg Essen, Univ Hosp Essen, Dept Neurol, Essen, Germany
[12] Univ Southern Calif, Dept Radiol, Los Angeles, CA USA
[13] Osped S Maria Misericordia, Dept Nucl Med, Radiol, NeuroRadiol,Clin Pathol, Via Tre Martiri, D-35043 Marburg, Germany
关键词
glioma; methionine; PET/MRI; machine learning; RADIATION NECROSIS; BRAIN-TUMORS; PET; DIFFERENTIATION; F-18-FET; MRI; IDH;
D O I
10.1097/RLU.0000000000002398
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose With the advent of the revised WHO classification from 2016, molecular features, including isocitrate dehydrogenase (IDH) mutation have become important in glioma subtyping. This pilot trial analyzed the potential for C-11-methionine (MET) PET/MRI in classifying glioma according to the revised WHO classification using a machine learning model. Methods Patients with newly diagnosed WHO grade II-IV glioma underwent preoperative MET-PET/MRI imaging. Patients were retrospectively divided into four groups: IDH wild-type glioblastoma (GBM), IDH wild-type grade II/III glioma (GII/III-IDHwt), IDH mutant grade II/III glioma with codeletion of 1p19q (GII/III-IDHmut1p19qcod) or without 1p19q-codeletion (GII/III-IDHmut1p19qnc). Within each group, the maximum tumor-to-brain-ratio (TBRmax) of MET-uptake was calculated. To gain generalizable implications from our data, we made use of a machine learning algorithm based on a development and validation subcohort. A support vector machine model was fit to the development subcohort and evaluated on the validation subcohort. Receiver operating characteristic (ROC) analysis served as metric to assess model performance. Results Of a total of 259 patients, 39 patients met the inclusion criteria. TBRmax was highest in the GBM cohort (TBRmax 3.83 +/- 1.30) and significantly higher (P = 0.004) compared to GII/III-IDHmut1p19qnc group, where TBRmax was lowest (TBRmax 2.05 +/- 0.94). ROC analysis showed poor AUC for glioma subtyping (AUC 0.62) and high AUC of 0.79 for predicting IDH status. In the GII/III-IDHmut1p19qcod group, TBR values were slightly higher than in the IDHmut1p19qnc group. Conclusions MET-PET/MRI imaging in pre-operatively classifying glioma entities appears useful for the assessment of IDH status. However, a larger trial is needed prior to translation into the clinical routine.
引用
收藏
页码:214 / 220
页数:7
相关论文
共 17 条
[1]   99mTc-Methionine Hybrid SPECT/CT for Detection of Recurrent Glioma: Comparison With 18F-FDG PET/CT and Contrast-Enhanced MRI [J].
Arora, Geetanjali ;
Sharma, Punit ;
Sharma, Anshul ;
Mishra, Anil Kumar ;
Hazari, Puja Panwar ;
Biswas, Ahitagni ;
Garg, Ajay ;
Aheer, Deepak ;
Kumar, Rakesh .
CLINICAL NUCLEAR MEDICINE, 2018, 43 (05) :e132-e138
[2]   MRI and 11C-methyl-L-methionine PET Differentiate Bevacizumab True Responders After Initiating Therapy for Recurrent Glioblastoma [J].
Beppu, Takaaki ;
Terasaki, Kazunori ;
Sasaki, Toshiaki ;
Sato, Yuichi ;
Tomabechi, Makiko ;
Kato, Kenichi ;
Sasaki, Makoto ;
Ogasawara, Kuniaki .
CLINICAL NUCLEAR MEDICINE, 2016, 41 (11) :852-857
[3]   Template for Reporting Results of Biomarker Testing of Specimens From Patients With Tumors of the Central Nervous System [J].
Brat, Daniel J. ;
Cagle, Philip T. ;
Dillon, Deborah A. ;
Hattab, Eyas M. ;
McLendon, Roger E. ;
Miller, Margaret A. ;
Buckner, Jan C. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2015, 139 (09) :1087-1093
[4]   Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis [J].
Dunet, Vincent ;
Pomoni, Anastasia ;
Hottinger, Andreas ;
Nicod-Lalonde, Marie ;
Prior, John O. .
NEURO-ONCOLOGY, 2016, 18 (03) :426-434
[5]   18F-Fluorocholine PET/CT, Brain MRI, and 5-Aminolevulinic Acid for the Assessment of Tumor Resection in High-Grade Glioma [J].
Garcia Vicente, Ana Maria ;
Jimenez Aragon, Fatima ;
Villena Martin, Maikal ;
Jimenez Londono, German Andres ;
Borras Moreno, Jose Maria .
CLINICAL NUCLEAR MEDICINE, 2017, 42 (06) :e300-e303
[6]   Applications of Support Vector Machine (SVM) Learning in Cancer Genomics [J].
Huang, Shujun ;
Cai, Nianguang ;
Pacheco, Pedro Penzuti ;
Narandes, Shavira ;
Wang, Yang ;
Xu, Wayne .
CANCER GENOMICS & PROTEOMICS, 2018, 15 (01) :41-51
[7]   Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours [J].
Jenkinson, Michael D. ;
Smith, Trevor S. ;
Joyce, Kathy A. ;
Fildes, Diane ;
Broome, John ;
du Plessis, Daniel G. ;
Haylock, Brian ;
Husband, David J. ;
Warnke, Peter C. ;
Walker, Carol .
NEURORADIOLOGY, 2006, 48 (10) :703-713
[8]   Machine learning: Trends, perspectives, and prospects [J].
Jordan, M. I. ;
Mitchell, T. M. .
SCIENCE, 2015, 349 (6245) :255-260
[9]   Hot spots in dynamic 18FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas [J].
Kunz, M. ;
Thon, N. ;
Eigenbrod, S. ;
Hartmann, C. ;
Egensperger, R. ;
Herms, J. ;
Geisler, J. ;
la Fougere, C. ;
Lutz, J. ;
Linn, J. ;
Kreth, S. ;
von Deimling, A. ;
Tonn, J. C. ;
Kretzschmar, H. A. ;
Poepperl, G. ;
Kreth, F. W. .
NEURO-ONCOLOGY, 2011, 13 (03) :307-316
[10]   Combined 68Ga-NOTA-PRGD2 and 18F-FDG PET/CT Can Discriminate Uncommon Meningioma Mimicking High-Grade Glioma [J].
Li, Deling ;
Zhang, Jingjing ;
Ji, Nan ;
Zhao, Xiaobin ;
Zheng, Kun ;
Qiao, Zhen ;
Li, Fang ;
Lang, Lixin ;
Iagaru, Andrei ;
Niu, Gang ;
Zhu, Zhaohui ;
Chen, Xiaoyuan .
CLINICAL NUCLEAR MEDICINE, 2018, 43 (09) :648-654