Thermal evolution of protoplanetary disks: from β-cooling to decoupled gas and dust temperatures

被引:11
|
作者
Vorobyov, Eduard I. [1 ,2 ]
Matsukoba, Ryoki [3 ]
Omukai, Kazuyuki [3 ]
Guedel, Manuel [1 ]
机构
[1] Univ Vienna, Dept Astrophys, A-1180 Vienna, Austria
[2] Ural Fed Univ, 51 Lenin Str, Ekaterinburg 620051, Russia
[3] Tohoku Univ, Astron Inst, Grad Sch Sci, Aoba Ku, Sendai, Miyagi 9808578, Japan
基金
奥地利科学基金会;
关键词
protoplanetary disks; stars: protostars; hydrodynamics; SELF-GRAVITATING DISCS; PLANCK MEAN OPACITIES; FAST INTERSTELLAR SHOCKS; RADIATIVE-TRANSFER; STAR-FORMATION; MOLECULAR-HYDROGEN; INFRARED-EMISSION; RATE COEFFICIENTS; ACCRETION; FRAGMENTATION;
D O I
10.1051/0004-6361/202037841
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure determined by various cooling and heating processes in the disk and its surroundings.Methods. Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a simplified beta -cooling approach with and without irradiation, where the rate of disk cooling is proportional to the local dynamical time; a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account; and a more sophisticated approach allowing decoupled dust and gas temperatures.Results. We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of energy between gas and dust in low-density disk regions. However, the outer envelope shows an inverse trend, with the gas temperatures dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-beta models without stellar and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of the intrinsically variable nature of the beta -parameter. Constant-beta models with irradiation more closely match the dynamical and thermal evolution, but the agreement is still incomplete.Conclusions. Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust evolution in protoplanetary disks, particularly in subsolar metallicity environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Lagrangian model for dust evolution in protoplanetary disks: formation of wet and dry planetesimals at different stellar masses
    Schoonenberg, Djoeke
    Ormel, Chris W.
    Krijt, Sebastiaan
    ASTRONOMY & ASTROPHYSICS, 2018, 620
  • [42] Uncertainties of the dust grain size in protoplanetary disks retrieved from millimeter continuum observations
    Li, Dafa
    Liu, Yao
    Wang, Hongchi
    Fang, Min
    Wang, Lei
    ASTRONOMY & ASTROPHYSICS, 2024, 688
  • [43] Consistent dust and gas models for protoplanetary disks II. Chemical networks and rates
    Kamp, I.
    Thi, W. -F.
    Woitke, P.
    Rab, C.
    Bouma, S.
    Menard, F.
    ASTRONOMY & ASTROPHYSICS, 2017, 607
  • [44] ALMA SURVEY OF LUPUS PROTOPLANETARY DISKS. I. DUST AND GAS MASSES
    Ansdell, M.
    Williams, J. P.
    van der Marel, N.
    Carpenter, J. M.
    Guidi, G.
    Hogerheijde, M.
    Mathews, G. S.
    Manara, C. F.
    Miotello, A.
    Natta, A.
    Oliveira, I.
    Tazzari, M.
    Testi, L.
    van Dishoeck, E. F.
    van Terwisga, S. E.
    ASTROPHYSICAL JOURNAL, 2016, 828 (01)
  • [45] ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. I. CLASSIFYING THE EVOLUTION OF SIZE DISTRIBUTION
    Okuzumi, Satoshi
    Tanaka, Hidekazu
    Takeuchi, Taku
    Sakagami, Masa-aki
    ASTROPHYSICAL JOURNAL, 2011, 731 (02)
  • [46] Secular Gravitational Instability of Drifting Dust in Protoplanetary Disks: Formation of Dusty Rings without Significant Gas Substructures
    Tominaga, Ryosuke T.
    Takahashi, Sanemichi Z.
    Inutsuka, Shu-ichiro
    ASTROPHYSICAL JOURNAL, 2020, 900 (02)
  • [47] Dust ring and gap formation by gas flow induced by low-mass planets embedded in protoplanetary disks
    Kuwahara, Ayumu
    Lambrechts, Michiel
    Kurokawa, Hiroyuki
    Okuzumi, Satoshi
    Tanigawa, Takayuki
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [48] Consistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHs
    Woitke, P.
    Min, M.
    Pinte, C.
    Thi, W. -F.
    Kamp, I.
    Rab, C.
    Anthonioz, F.
    Antonellini, S.
    Baldovin-Saavedra, C.
    Carmona, A.
    Dominik, C.
    Dionatos, O.
    Greaves, J.
    Guedel, M.
    Ilee, J. D.
    Liebhart, A.
    Menard, F.
    Rigon, L.
    Waters, L. B. F. M.
    Aresu, G.
    Meijerink, R.
    Spaans, M.
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [49] The thermal regulation of gravitational instabilities in protoplanetary disks.: III.: Simulations with radiative cooling and realistic opacities
    Boley, Aaron C.
    Mejia, Annie C.
    Durisen, Richard H.
    Cai, Kai
    Pickett, Megan K.
    D'Alessio, Paola
    ASTROPHYSICAL JOURNAL, 2006, 651 (01) : 517 - 534
  • [50] On the secular evolution of the ratio between gas and dust radii in protoplanetary discs
    Toci, Claudia
    Rosotti, Giovanni
    Lodato, Giuseppe
    Testi, Leonardo
    Trapman, Leon
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (01) : 818 - 833