Solving eigenvalue problems on curved surfaces using the Closest Point Method

被引:51
|
作者
Macdonald, Colin B. [1 ]
Brandman, Jeremy [2 ]
Ruuth, Steven J. [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Eigenvalues; Eigenfunctions; Laplace-Beltrami operator; Closest Point Method; Surface computation; Implicit surfaces; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICIT SURFACES; GENERAL GEOMETRIES; OPERATORS; PDES;
D O I
10.1016/j.jcp.2011.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7944 / 7956
页数:13
相关论文
共 50 条
  • [41] An immersive modeler for curved objects using implicit surfaces
    Matsumiya, M
    Kiyokawa, K
    Takemura, H
    Yokoya, N
    INTELLIGENT SYSTEMS IN DESIGN AND MANUFACTURING II, 1999, 3833 : 109 - 120
  • [42] A proximal point like method for solving tensor least-squares problems
    Liang, Maolin
    Zheng, Bing
    Zheng, Yutao
    CALCOLO, 2022, 59 (01)
  • [43] An iterative method for solving split monotone variational inclusion and fixed point problems
    Shehu, Yekini
    Ogbuisi, Ferdinard U.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 503 - 518
  • [44] A SIMPLE STRONG CONVERGENT METHOD FOR SOLVING SPLIT COMMON FIXED POINT PROBLEMS
    Taiwo, A.
    Mewomo, O. T.
    Gibali, A.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (05): : 777 - 793
  • [45] A multilevel finite element method for Fredholm integral eigenvalue problems
    Xie, Hehu
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 173 - 184
  • [46] On Two-Point Right Focal Eigenvalue Problems
    Wong, P. J. Y.
    Agarwal, R. P.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (03): : 691 - 713
  • [47] The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces
    Piret, Cecile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (14) : 4662 - 4675
  • [48] Surface Flow Visualization Using the Closest Point Embedding
    Kim, Mark
    Hansen, Charles
    2015 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2015, : 17 - 23
  • [49] GPU Surface Extraction using the Closest Point Embedding
    Kim, Mark
    Hansen, Charles
    VISUALIZATION AND DATA ANALYSIS 2015, 2015, 9397
  • [50] Inertial Method for Solving Pseudomonotone Variational Inequality and Fixed Point Problems in Banach Spaces
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AXIOMS, 2023, 12 (10)