Solving eigenvalue problems on curved surfaces using the Closest Point Method

被引:51
|
作者
Macdonald, Colin B. [1 ]
Brandman, Jeremy [2 ]
Ruuth, Steven J. [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Eigenvalues; Eigenfunctions; Laplace-Beltrami operator; Closest Point Method; Surface computation; Implicit surfaces; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICIT SURFACES; GENERAL GEOMETRIES; OPERATORS; PDES;
D O I
10.1016/j.jcp.2011.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7944 / 7956
页数:13
相关论文
共 50 条
  • [31] Augmented coupling interface method for solving eigenvalue problems with sign-changed coefficients
    Shu, Yu-Chen
    Kao, Chiu-Yen
    Chern, I-Liang
    Chang, Chien C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (24) : 9246 - 9268
  • [32] Solving fuzzy complex system of linear equations using eigenvalue method
    Farahani, Hamed
    Nehi, Hassan Mishmast
    Paripour, Mahmoud
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 31 (03) : 1689 - 1699
  • [33] A simple embedding method for solving partial differential equations on surfaces
    Ruuth, Steven J.
    Merriman, Barry
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (03) : 1943 - 1961
  • [34] NOVEL APPROACH FOR EIGENVALUE PROBLEMS USING THE MONTE CARLO METHOD
    Shaheen, Fauzia
    Ahmad, Najmuddin
    JOURNAL OF SCIENCE AND ARTS, 2023, (04): : 953 - 964
  • [35] A FINITE VOLUME METHOD FOR SOLVING PARABOLIC EQUATIONS ON LOGICALLY CARTESIAN CURVED SURFACE MESHES
    Calhoun, Donna A.
    Helzel, Christiane
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4066 - 4099
  • [36] Optimized schwarz domain decomposition algorithms for the closest point method on closed manifolds
    Yazdani, Alireza
    Haynes, Ronald D.
    Ruuth, Steven J.
    NUMERICAL ALGORITHMS, 2024,
  • [37] A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing
    King, Nathan
    Su, Haozhe
    Aanjaneya, Mridul
    Ruuth, Steven
    Batty, Christopher
    ACM TRANSACTIONS ON GRAPHICS, 2024, 43 (05):
  • [38] Projected Walk on Spheres: A Monte Carlo Closest Point Method for Surface PDEs
    Sugimoto, Ryusuke
    King, Nathan
    Hachisuka, Toshiya
    Batty, Christopher
    PROCEEDINGS SIGGRAPH ASIA 2024 CONFERENCE PAPERS, 2024,
  • [39] The Shrinking Projection Method for Solving Variational Inequality Problems and Fixed Point Problems in Banach Spaces
    Wangkeeree, Rabian
    Wangkeeree, Rattanaporn
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [40] SOLVING EIGENVALUE PROBLEMS OF REAL NONSYMMETRIC MATRICES WITH REAL HOMOTOPIES
    LI, TY
    ZENG, ZG
    CONG, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) : 229 - 248