Solving eigenvalue problems on curved surfaces using the Closest Point Method

被引:51
|
作者
Macdonald, Colin B. [1 ]
Brandman, Jeremy [2 ]
Ruuth, Steven J. [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[3] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Eigenvalues; Eigenfunctions; Laplace-Beltrami operator; Closest Point Method; Surface computation; Implicit surfaces; PARTIAL-DIFFERENTIAL-EQUATIONS; IMPLICIT SURFACES; GENERAL GEOMETRIES; OPERATORS; PDES;
D O I
10.1016/j.jcp.2011.06.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7944 / 7956
页数:13
相关论文
共 50 条
  • [1] THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
    Macdonald, Colin B.
    Ruuth, Steven J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06): : 4330 - 4350
  • [2] An RBF-FD closest point method for solving PDEs on surfaces
    Petras, A.
    Ling, L.
    Ruuth, S. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 370 : 43 - 57
  • [3] CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
    Maerz, Thomas
    Macdonald, Colin B.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3303 - 3328
  • [4] Level Set Equations on Surfaces via the Closest Point Method
    Colin B. Macdonald
    Steven J. Ruuth
    Journal of Scientific Computing, 2008, 35 : 219 - 240
  • [5] Level set equations on surfaces via the Closest Point Method
    Macdonald, Colin B.
    Ruuth, Steven J.
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (2-3) : 219 - 240
  • [6] THE CLOSEST POINT METHOD AND MULTIGRID SOLVERS FOR ELLIPTIC EQUATIONS ON SURFACES
    Chen, Yujia
    Macdonald, Colin B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A134 - A155
  • [7] A meshless collocation method based on Pascal polynomial approximation and implicit closest point method for solving reaction-diffusion systems on surfaces
    Zamani-Gharaghoshi, Hasan
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    ENGINEERING WITH COMPUTERS, 2024, 40 (01) : 313 - 322
  • [8] Solving variational problems and partial differential equations that map between manifolds via the closest point method
    King, Nathan D.
    Ruuth, Steven J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 330 - 346
  • [9] SEGMENTATION ON SURFACES WITH THE CLOSEST POINT METHOD
    Tian, Li
    Macdonald, Colin B.
    Ruuth, Steven J.
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 3009 - +
  • [10] Real-Time Fluid Effects on Surfaces using the Closest Point Method
    Auer, S.
    Macdonald, C. B.
    Treib, M.
    Schneider, J.
    Westermann, R.
    COMPUTER GRAPHICS FORUM, 2012, 31 (06) : 1909 - 1923