A study on the application of the Tensor Train decomposition method to 3D direct numerical simulation data of channel turbulence flow is presented. The approach is validated with respect to compression rate and storage requirement. In tests with synthetic data, it is found that grid-aligned self-similar patterns are well captured and also the application to non-grid-aligned self-similarity yields satisfying results. It is observed that the shape of the input Tensor significantly affects the compression rate. Applied to data of channel turbulent flow, the Tensor Train format allows for surprisingly high compression rates whilst ensuring low relative errors. However, the results indicate that representation of highly irregular flows at low ranks cannot be expected.