Almost Global Existence for the Fractional Schrodinger Equations

被引:3
作者
Mi, Lufang [1 ]
Cong, Hongzi [2 ]
机构
[1] Binzhou Univ, Inst Aeronaut Engn & Technol, Coll Sci, Binzhou 256600, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
关键词
Long time stability; Tame property; Hamiltonian partial differential equation; Stability; KLEIN-GORDON EQUATIONS; LONG-TIME EXISTENCE; BIRKHOFF NORMAL-FORM; PLANE-WAVE SOLUTIONS; SOBOLEV STABILITY; PERIODIC SOLUTIONS; THEOREM; TORI;
D O I
10.1007/s10884-019-09783-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time of existence of the solutions of the following nonlinear Schrodinger equation (NLS) iu(t) = (-Delta + m)(s)u - vertical bar u vertical bar(2)u on the finite x-interval [0, pi] with Dirichlet boundary conditions u(t, 0) = 0 = u(t, pi), -infinity < t < +infinity, where (-Delta + m)(s) stands for the spectrally defined fractional Laplacian with 0 < s < 1/2. We prove an almost global existence result for the above fractional Schrodinger equation, which generalizes the result in Bambusi and Sire (Dyn PDE 10(2):171-176, 2013) from s > 1/2 to 0 < s < 1/2.
引用
收藏
页码:1553 / 1575
页数:23
相关论文
共 36 条
[21]   A NEKHOROSHEV-TYPE THEOREM FOR THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS [J].
Faou, Erwan ;
Grebert, Benoit .
ANALYSIS & PDE, 2013, 6 (06) :1243-1262
[22]   Sobolev Stability of Plane Wave Solutions to the Cubic Nonlinear Schrodinger Equation on a Torus [J].
Faou, Erwan ;
Gauckler, Ludwig ;
Lubich, Christian .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (07) :1123-1140
[23]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[24]  
Feola Roberto, 2018, ARXIV180603437
[25]   Nonlinear Schrodinger Equations and Their Spectral Semi-Discretizations Over Long Times [J].
Gauckler, Ludwig ;
Lubich, Christian .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (02) :141-169
[26]  
Grbert B., 2007, Sminaires et Congrs, V15, P1
[27]   Long time existence for the semi-linear beam equation on irrational tori of dimension two [J].
Imekraz, Rafik .
NONLINEARITY, 2016, 29 (10) :3067-3102
[28]   Long-time existence for multi-dimensional periodic water waves [J].
Ionescu, A. D. ;
Pusateri, F. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2019, 29 (03) :811-870
[29]   Nonlinear fractional Schrodinger equations in one dimension [J].
Ionescu, Alexandru D. ;
Pusateri, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (01) :139-176
[30]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108