Almost Global Existence for the Fractional Schrodinger Equations

被引:3
作者
Mi, Lufang [1 ]
Cong, Hongzi [2 ]
机构
[1] Binzhou Univ, Inst Aeronaut Engn & Technol, Coll Sci, Binzhou 256600, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
关键词
Long time stability; Tame property; Hamiltonian partial differential equation; Stability; KLEIN-GORDON EQUATIONS; LONG-TIME EXISTENCE; BIRKHOFF NORMAL-FORM; PLANE-WAVE SOLUTIONS; SOBOLEV STABILITY; PERIODIC SOLUTIONS; THEOREM; TORI;
D O I
10.1007/s10884-019-09783-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the time of existence of the solutions of the following nonlinear Schrodinger equation (NLS) iu(t) = (-Delta + m)(s)u - vertical bar u vertical bar(2)u on the finite x-interval [0, pi] with Dirichlet boundary conditions u(t, 0) = 0 = u(t, pi), -infinity < t < +infinity, where (-Delta + m)(s) stands for the spectrally defined fractional Laplacian with 0 < s < 1/2. We prove an almost global existence result for the above fractional Schrodinger equation, which generalizes the result in Bambusi and Sire (Dyn PDE 10(2):171-176, 2013) from s > 1/2 to 0 < s < 1/2.
引用
收藏
页码:1553 / 1575
页数:23
相关论文
共 36 条
[1]   A Birkhoff normal form theorem for some semilinear PDEs [J].
Bambusi, D. .
HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, :213-247
[2]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[3]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[4]   On long time stability in Hamiltonian perturbations of non-resonant linear PDEs [J].
Bambusi, D .
NONLINEARITY, 1999, 12 (04) :823-850
[5]   Birkhoff normal form for some nonlinear PDEs [J].
Bambusi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) :253-285
[6]  
Bambusi D, 2013, DYNAM PART DIFFER EQ, V10, P171
[7]   A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
CELESTIAL MECHANICS, 1985, 37 (01) :1-25
[8]  
Berti M., 2017, ARXIV170204674
[9]  
Berti M., 2018, LECT NOTES UNION MAT
[10]   Construction of approximative and almost periodic solutions of perturbed linear Schrodinger and wave equations [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :201-230