Generalized Cauchy matrix approach for lattice Boussinesq-type equations

被引:11
|
作者
Zhao, Songlin [1 ]
Zhang, Dajun [1 ]
Shi, Ying [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice Boussinesq-type equations; Generalized Cauchy matrix approach; Exact solutions; PARTIAL DIFFERENCE-EQUATIONS;
D O I
10.1007/s11401-012-0699-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors generalize the Cauchy matrix approach to get exact solutions to the lattice Boussinesq-type equations: lattice Boussinesq equation, lattice modified Boussinesq equation and lattice Schwarzian Boussinesq equation. Some kinds of solutions including soliton solutions, Jordan block solutions and mixed solutions are obtained.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 50 条
  • [1] Generalized Cauchy matrix approach for lattice Boussinesq-type equations
    Songlin Zhao
    Dajun Zhang
    Ying Shi
    Chinese Annals of Mathematics, Series B, 2012, 33 : 259 - 270
  • [2] Generalized Cauchy Matrix Approach for Lattice Boussinesq-Type Equations
    Songlin ZHAO 1 Dajun ZHANG 2 Ying SHI 21 Corresponding author.Department of Mathematics
    ChineseAnnalsofMathematics(SeriesB), 2012, 33 (02) : 259 - 270
  • [3] Exact Solutions to Lattice Boussinesq-Type Equations
    Wei Feng
    Song-Lin Zhao
    Da-Jun Zhang
    Journal of Nonlinear Mathematical Physics, 2012, 19 : 524 - 538
  • [4] Generalized Cauchy matrix approach for lattice KP-type equations
    Feng, Wei
    Zhao, Songlin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (07) : 1652 - 1664
  • [5] EXACT SOLUTIONS TO LATTICE BOUSSINESQ-TYPE EQUATIONS
    Feng, Wei
    Zhao, Song-Lin
    Zhang, Da-Jun
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (04) : 524 - 538
  • [6] REVISITING SOLUTIONS OF THE ADLER-BOBENKO-SURIS LATTICE EQUATIONS AND LATTICE BOUSSINESQ-TYPE EQUATIONS
    Zhao, Song-lin
    Yan, Ke
    Sun, Ying-ying
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 219 (03) : 944 - 972
  • [7] Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) : 314 - 322
  • [8] Solutions to ABS Lattice Equations via Generalized Cauchy Matrix Approach
    Zhang, D. -J.
    Zhao, S. -L.
    STUDIES IN APPLIED MATHEMATICS, 2013, 131 (01) : 72 - 103
  • [9] Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations
    H. A. Erbay
    S. Erbay
    A. Erkip
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 314 - 322
  • [10] INSTABILITIES OF GENERALIZED BOUSSINESQ-TYPE WAVES
    MURAWSKI, K
    WAVE MOTION, 1988, 10 (02) : 161 - 169