InGaAs/GaAsP quantum wells for hot carrier solar cells

被引:17
作者
Hirst, Louise C. [1 ]
Fuehrer, Markus [1 ]
Farrell, Daniel J. [1 ]
Le Bris, Arthur [2 ]
Guillemoles, Jean-Francois [2 ]
Tayebjee, Murad J. Y. [3 ]
Clady, Raphael [3 ]
Schmidt, Timothy W. [3 ]
Sugiyama, Masakazu [4 ]
Wang, Yunpeng [4 ]
Fujii, Hiromasa [4 ]
Ekins-Daukes, Nicholas J. [1 ]
机构
[1] London Imperial Coll, London, England
[2] Inst Rech Dev Ienergie Photovolta, Paris, France
[3] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[4] Univ Tokyo, RCAST, Tokyo 1138654, Japan
来源
PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES | 2012年 / 8256卷
关键词
solar cell; high efficiency; hot carrier; quantum well; GAAS; EFFICIENCY; BULK;
D O I
10.1117/12.910581
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hot carrier solar cells have a fundamental efficiency limit well in excess of single junction devices. Developing a hot carrier absorber material, which exhibits sufficiently slow carrier cooling to maintain a hot carrier population under realistic levels of solar concentration is a key challenge in developing real-world hot carrier devices. We propose strain-balanced In0.25GaAs/GaAsP0.33 quantum wells as a suitable absorber material and present continuous-wave photoluminescence spectroscopy of this structure. Samples were optimised with deep wells and the GaAs surface buffer layer was reduced in thickness to maximise photon absorption in the well region. The effect of well thickness on carrier distribution temperature was also investigated. An enhanced hot carrier effect was observed in the optimised structures and a hot carrier distribution temperature was measured in the thick well (14 nm) sample under photon flux density equivalent to 1000 Suns concentration.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Selective energy contacts for hot carrier solar cells [J].
Conibeer, G. J. ;
Jiang, C. -W. ;
Konig, D. ;
Shrestha, S. ;
Walsh, T. ;
Green, M. A. .
THIN SOLID FILMS, 2008, 516 (20) :6968-6973
[2]   A hot-carrier solar cell with optical energy selective contacts [J].
Farrell, D. J. ;
Takeda, Y. ;
Nishikawa, K. ;
Nagashima, T. ;
Motohiro, T. ;
Ekins-Daukes, N. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[3]  
Green M. A., 2006, Third Generation Photovoltaics
[4]  
Hirst L., 2011, P 37 IEEE PHOT SPEC
[5]   Fundamental losses in solar cells [J].
Hirst, Louise C. ;
Ekins-Daukes, Nicholas J. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (03) :286-293
[6]   Hot carrier solar cells: Achievable efficiency accounting for heat losses in the absorber and through contacts [J].
Le Bris, A. ;
Guillemoles, J. -F. .
APPLIED PHYSICS LETTERS, 2010, 97 (11)
[7]   DIRECT MEASUREMENT OF HOT-ELECTRON RELAXATION BY PICOSECOND SPECTROSCOPY [J].
LINDE, DVD ;
LAMBRICH, R .
PHYSICAL REVIEW LETTERS, 1979, 42 (16) :1090-1093
[8]   COOLING OF HOT CARRIERS IN GA0.47IN0.53AS [J].
LOBENTANZER, H ;
POLLAND, HJ ;
RUHLE, WW ;
STOLZ, W ;
PLOOG, K .
APPLIED PHYSICS LETTERS, 1987, 51 (09) :673-675
[9]   COMPARISON OF HOT-CARRIER RELAXATION IN QUANTUM-WELLS AND BULK GAAS AT HIGH CARRIER DENSITIES [J].
PELOUCH, WS ;
ELLINGSON, RJ ;
POWERS, PE ;
TANG, CL ;
SZMYD, DM ;
NOZIK, AJ .
PHYSICAL REVIEW B, 1992, 45 (03) :1450-1453
[10]   HOT-CARRIER COOLING IN GAAS - QUANTUM-WELLS VERSUS BULK [J].
ROSENWAKS, Y ;
HANNA, MC ;
LEVI, DH ;
SZMYD, DM ;
AHRENKIEL, RK ;
NOZIK, AJ .
PHYSICAL REVIEW B, 1993, 48 (19) :14675-14678