OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps

被引:12
|
作者
Zhou, Xiaozhu [1 ,2 ,3 ]
Shade, Chad M. [1 ]
Schmucker, Abrin L. [1 ]
Brown, Keith A. [2 ]
He, Shu [1 ]
Boey, Freddy [3 ]
Ma, Jan [3 ]
Zhang, Hua [3 ]
Mirkin, Chad A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
Graphene; nanogap; nanoribbon; on-wire lithography; silicon nanostructure; ON-WIRE LITHOGRAPHY; MEMBRANE; NANOMESH;
D O I
10.1021/nl302171z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.
引用
收藏
页码:4734 / 4737
页数:4
相关论文
共 50 条
  • [21] Fluorescence nanoscopy at the sub-10 nm scale
    Masullo, Luciano A.
    Szalai, Alan M.
    Lopez, Lucia F.
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1101 - 1112
  • [22] CMOS downsizing toward sub-10 nm
    Iwai, H
    SOLID-STATE ELECTRONICS, 2004, 48 (04) : 497 - 503
  • [23] Sub-10 nm fabrication: methods and applications
    Chen, Yiqin
    Shu, Zhiwen
    Zhang, Shi
    Zeng, Pei
    Liang, Huikang
    Zheng, Mengjie
    Duan, Huigao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2021, 3 (03)
  • [24] Capillary filling of sub-10 nm nanochannels
    Haneveld, Jeroen
    Tas, Niels R.
    Brunets, Nataliya
    Jansen, Henri V.
    Elwenspoek, Miko
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
  • [25] Growth of sub-10 nm fluorescent nanodiamonds
    Alzahrani, Yahya A.
    Alkahtani, Masfer H.
    OPTICAL MATERIALS EXPRESS, 2023, 13 (08) : 2192 - 2202
  • [26] Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride
    Chen, Dongxue
    Qiao, Ruixi
    Xu, Xiaozhi
    Dong, Weikang
    Wang, Li
    Ma, Ruisong
    Liu, Can
    Zhang, Zhihong
    Wu, Muhong
    Liu, Lei
    Bao, Lihong
    Wang, Hui-Tian
    Gao, Peng
    Liu, Kaihui
    Yu, Dapeng
    NANOSCALE, 2019, 11 (10) : 4226 - 4230
  • [27] Self-formation of sub-10 nm nanogaps based on silicidation
    Tang, Xiaohui
    Francis, Laurent A.
    Dutu, Constantin Augustin
    Reckinger, Nicolas
    Raskin, Jean-Pierre
    NANOTECHNOLOGY, 2014, 25 (11)
  • [28] Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition
    Chen, Borui
    Ji, Dengxin
    Cheney, Alec
    Zhang, Nan
    Song, Haomin
    Zeng, Xie
    Thomay, Tim
    Gan, Qiaoqiang
    Cartwright, Alexander
    NANOTECHNOLOGY, 2016, 27 (37)
  • [29] Plasmonic Coupling of Ag Nanoparticle Arrays with sub-10 nm Gaps: Near-Field Origins
    Lin, B. -Y.
    Hsu, H. -C.
    Teng, C. -H.
    Chang, H. -C.
    Wang, Y. -L.
    Wang, J. -K.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2363 - +
  • [30] Simple fabrication scheme for sub-10 nm electrode gaps using electron-beam lithography
    Liu, K
    Avouris, P
    Bucchignano, J
    Martel, R
    Sun, S
    Michl, J
    APPLIED PHYSICS LETTERS, 2002, 80 (05) : 865 - 867