OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps

被引:12
|
作者
Zhou, Xiaozhu [1 ,2 ,3 ]
Shade, Chad M. [1 ]
Schmucker, Abrin L. [1 ]
Brown, Keith A. [2 ]
He, Shu [1 ]
Boey, Freddy [3 ]
Ma, Jan [3 ]
Zhang, Hua [3 ]
Mirkin, Chad A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
Graphene; nanogap; nanoribbon; on-wire lithography; silicon nanostructure; ON-WIRE LITHOGRAPHY; MEMBRANE; NANOMESH;
D O I
10.1021/nl302171z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.
引用
收藏
页码:4734 / 4737
页数:4
相关论文
共 50 条
  • [1] Nanotube-Bridged Wires with Sub-10 nm Gaps
    Lee, Byung Yang
    Heo, Kwang
    Schmucker, Abrin L.
    Jin, Hye Jun
    Lim, Jong Kuk
    Kim, Taekyeong
    Lee, Haemi
    Jeon, Ki-Seok
    Suh, Yung Doug
    Mirkin, Chad A.
    Hong, Seunghun
    NANO LETTERS, 2012, 12 (04) : 1879 - 1884
  • [2] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [3] Focus on sub-10 nm nanofabrication
    Perego, Michele
    NANOTECHNOLOGY, 2018, 29 (26)
  • [4] Dual-width plasmonic gratings with sub-10 nm gaps for biosensor applications
    Bauman, Stephen J.
    Darweesh, Ahmad A.
    Herzog, Joseph B.
    NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XIII, 2016, 9927
  • [5] Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas
    Duan, Huigao
    Hu, Hailong
    Hui, Hui Kim
    Shen, Zexiang
    Yang, Joel K. W.
    NANOTECHNOLOGY, 2013, 24 (18)
  • [6] Tunable and Broadband Plasmonic Absorption via Dispersible Nanoantennas with Sub-10 nm Gaps
    Mangelson, Bryan F.
    Park, Daniel J.
    Ku, Jessie C.
    Osberg, Kyle D.
    Schatz, George C.
    Mirkin, Chad A.
    SMALL, 2013, 9 (13) : 2250 - 2254
  • [7] CMOS Scaling for sub-90 nm to sub-10 nm
    Iwai, H
    17TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: DESIGN METHODOLOGIES FOR THE GIGASCALE ERA, 2004, : 30 - 35
  • [8] Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity
    Kim, Namjo
    Choi, Shinyoung
    Yang, Seong-Jun
    Park, Jewook
    Park, Jun-Ho
    Nguyen, Nguyen Ngan
    Park, Kwanghee
    Ryu, Sunmin
    Cho, Kilwon
    Kim, Cheol-Joo
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28593 - 28599
  • [9] Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps
    Wang, HH
    Liu, CY
    Wu, SB
    Liu, NW
    Peng, CY
    Chan, TH
    Hsu, CF
    Wang, JK
    Wang, YL
    ADVANCED MATERIALS, 2006, 18 (04) : 491 - +
  • [10] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Han, Shu-Jen
    Tulevski, George S.
    Luisier, Mathieu
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,