Scalable qubit architecture based on holes in quantum dot molecules

被引:52
作者
Economou, Sophia E. [1 ]
Climente, Juan I. [2 ]
Badolato, Antonio [3 ]
Bracker, Allan S. [1 ]
Gammon, Daniel [1 ]
Doty, Matthew F. [4 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Univ Jaume 1, Dept Quim Fis & Analit, E-12080 Castellon de La Plana, Spain
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
OPTICAL CONTROL; SPIN;
D O I
10.1103/PhysRevB.86.085319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spins confined in quantum dots are a leading candidate for solid-state quantum bits that can be coherently controlled by optical pulses. There are, however, many challenges to developing a scalable multibit information processing device based on spins in quantum dots, including the natural inhomogeneous distribution of quantum dot energy levels, the difficulty of creating all-optical spin manipulation protocols compatible with nondestructive readout, and the substantial electron-nuclear hyperfine interaction-induced decoherence. Here, we present a scalable qubit design and device architecture based on the spin states of single holes confined in a quantum dot molecule. The quantum dot molecule qubit enables a new strategy for optical coherent control with dramatically enhanced wavelength tunability. The use of hole spins allows the suppression of decoherence via hyperfine interactions and enables coherent spin rotations using Raman transitions mediated by a hole-spin-mixed optically excited state. Because the spin mixing is present only in the optically excited state, dephasing and decoherence are strongly suppressed in the ground states that define the qubits and nondestructive readout is possible. We present the qubit and device designs and analyze the wavelength tunability and fidelity of gate operations that can be implemented using this strategy. We then present experimental and theoretical progress toward implementing this design.
引用
收藏
页数:13
相关论文
共 48 条
  • [21] Fast high fidelity hole spin initialization in a single InGaAs quantum dot
    Godden, T. M.
    Boyle, S. J.
    Ramsay, A. J.
    Fox, A. M.
    Skolnick, M. S.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (06)
  • [22] Ultrafast optical rotations of electron spins in quantum dots
    Greilich, A.
    Economou, Sophia E.
    Spatzek, S.
    Yakovlev, D. R.
    Reuter, D.
    Wieck, A. D.
    Reinecke, T. L.
    Bayer, M.
    [J]. NATURE PHYSICS, 2009, 5 (04) : 262 - 266
  • [23] Greilich A, 2011, NAT PHOTONICS, V5, P703, DOI [10.1038/nphoton.2011.237, 10.1038/NPHOTON.2011.237]
  • [24] Observation of extremely slow hole spin relaxation in self-assembled quantum dots
    Heiss, D.
    Schaeck, S.
    Huebl, H.
    Bichler, M.
    Abstreiter, G.
    Finley, J. J.
    Bulaev, D. V.
    Loss, Daniel
    [J]. PHYSICAL REVIEW B, 2007, 76 (24)
  • [25] Valence holes as Luttinger spinor based qubits in quantum dots
    Hsieh, Chang-Yu
    Cheriton, Ross
    Korkusinski, Marek
    Hawrylak, Pawel
    [J]. PHYSICAL REVIEW B, 2009, 80 (23):
  • [26] Coupling quantum dot spins to a photonic crystal nanocavity
    Imamoglu, A.
    Faelt, S.
    Dreiser, J.
    Fernandez, G.
    Atatuere, M.
    Hennessy, K.
    Badolato, A.
    Gerace, D.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 101 (08)
  • [27] Quantum information processing using quantum dot spins and cavity QED
    Imamoglu, A
    Awschalom, DD
    Burkard, G
    DiVincenzo, DP
    Loss, D
    Sherwin, M
    Small, A
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (20) : 4204 - 4207
  • [28] Ultrafast optical control of entanglement between two quantum-dot spins
    Kim, Danny
    Carter, Samuel G.
    Greilich, Alex
    Bracker, Allan S.
    Gammon, Daniel
    [J]. NATURE PHYSICS, 2011, 7 (03) : 223 - 229
  • [29] Tuning the exciton g factor in single InAs/InP quantum dots
    Kim, Danny
    Sheng, Weidong
    Poole, Philip J.
    Dalacu, Dan
    Lefebvre, Jacques
    Lapointe, Jean
    Reimer, Michael E.
    Aers, Geoff C.
    Williams, Robin L.
    [J]. PHYSICAL REVIEW B, 2009, 79 (04):
  • [30] Optical Spin Initialization and Nondestructive Measurement in a Quantum Dot Molecule
    Kim, Danny
    Economou, Sophia E.
    Badescu, Stefan C.
    Scheibner, Michael
    Bracker, Allan S.
    Bashkansky, Mark
    Reinecke, Thomas L.
    Gammon, Daniel
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (23)