Techno-economic analysis of a solar-powered humidification-dehumidification desalination system under fogging effect

被引:22
|
作者
Alrbai, Mohammad [1 ]
Hayajneh, Hassan [2 ]
Arakza, Faris [1 ]
Enizat, Jamil [1 ]
Al-Dahidi, Sameer [3 ]
Al-Ghussain, Loiy [4 ]
Hassan, Muhammed A. [5 ]
机构
[1] Univ Jordan, Dept Mech Engn, Sch Engn, Amman 11942, Jordan
[2] Purdue Univ Northwest, Mechatron Engn Technol, Dept Engn Technol, Coll Technol, 2200 169th St, Hammond, IN 46323 USA
[3] German Jordanian Univ, Mech & Maintenance Engn Dept, Amman 11180, Jordan
[4] Univ Kentucky, Mech Engn Dept, Lexington, KY 40506 USA
[5] Cairo Univ, Fac Engn, Mech Power Engn Dept, Giza 12613, Egypt
关键词
Water desalination; Humidification-dehumidification; Fogging nozzles; Solar energy; Gained output ratio; Economic analysis; PERFORMANCE; UNIT;
D O I
10.1016/j.seta.2022.102752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Different techniques are utilized to overcome the problem of freshwater shortage around the world. Humidification-dehumidification technology is among the promising methods, especially when powered by cost-effective solar energy sources or when used in remote desert areas with abundant solar resources. In this study, a solar energy-powered humidification-dehumidification system is assembled and tested. Two solar energy systems are supplying the humidification-dehumidification system with heat and electricity, namely an evacuated tube solar collector and an array of photovoltaic panels, respectively. The studied system utilizes three fogging nozzles, each with a 10-mu m diameter, that allow efficient energy conversion. Also, the system was tested under the influence of a single nozzle with a larger diameter for comparison purposes. The fogging technique reduced the power consumption while boosting the total system productivity. The system was able to achieve a maximum gained output ratio of 4.4 at saline water and air temperatures of 80 and 53.44 degrees C, respectively. The rate of freshwater production ranged between 1.7 and 3.85 L/h. At the highest tested saline water to air ratio, the system with three 10-mu m nozzles enhanced the gained output ratio by 23.68 and 67.33 %, compared to the single nozzle configuration with 20 and 30-mu m diameter, respectively. An economic evaluation showed a best-averaged price of 0.0543 USD/L of freshwater.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Optimization of Humidification-Dehumidification solar desalination Unit: Comparative analysis
    Easa, Ammar S.
    Khalaf-Allah, Reda A.
    Mohamed, Salwa M.
    Habba, Mohamed I. A.
    Tolan, Mohamed T.
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [22] On the dimensional analysis for solar desalination using humidification-dehumidification processes
    Zhou, Xinyi
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [23] Numerical analysis of solar desalination using humidification-dehumidification cycle
    Farsad, S.
    Behzadmehr, A.
    Sarvari, S. M. Hosseini
    DESALINATION AND WATER TREATMENT, 2010, 19 (1-3) : 294 - 300
  • [24] Exergy analysis of the solar multi-effect humidification-dehumidification desalination process
    Hou, Shaobo
    Zeng, Dongqi
    Ye, Shengquan
    Zhang, Hefei
    DESALINATION, 2007, 203 (1-3) : 403 - 409
  • [25] Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification
    Deniz, Emrah
    Cinar, Serkan
    ENERGY CONVERSION AND MANAGEMENT, 2016, 126 : 12 - 19
  • [26] Effect of nanofluid on the performance of humidification-dehumidification (HDH) desalination system
    Shouman, Loula A.
    Fadel, Dalia A.
    Samad, S. Abdel
    Abdelaziz, Mohamed
    HEAT AND MASS TRANSFER, 2024, 60 (07) : 1251 - 1265
  • [27] Experimental investigation of a solar vacuum humidification-dehumidification (VHDH) desalination system
    Rahimi-Ahar, Zohreh
    Hatamipour, Mohammad Sadegh
    Ghalavand, Younes
    DESALINATION, 2018, 437 : 73 - 80
  • [28] Solar-powered Hydrogen Refueling Stations: A techno-economic analysis
    Micena, Raul Pereira
    Llerena-Pizarro, Omar R.
    de Souza, Teofilo Miguel
    Silveira, Jose Luz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) : 2308 - 2318
  • [29] Design of a Humidification-Dehumidification Seawater Desalination System Combined with Solar Chimneys
    Cao, Fei
    Zhang, Heng
    Liu, Qingjun
    Yang, Tian
    Zhu, Tianyu
    SUSTAINABLE DEVELOPMENT OF WATER AND ENVIRONMENT, 2019, : 181 - 187
  • [30] Solar assisted modified variable pressure humidification-dehumidification desalination system
    Rahimi-Ahar, Zohreh
    Hatamipour, Mohammad Sadegh
    Ghalavand, Younes
    ENERGY CONVERSION AND MANAGEMENT, 2018, 162 : 321 - 330