Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor

被引:138
作者
Sun, Shaodong [1 ]
Zhang, Xiaozhe [1 ]
Sun, Yuexia [1 ]
Yang, Shengchun [1 ]
Song, Xiaoping [1 ]
Yang, Zhimao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, State Key Lab Mech Behav Mat, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Xian 710049, Shaanxi, Peoples R China
基金
美国国家科学基金会;
关键词
WALLED CARBON NANOTUBE; URCHIN-LIKE CUO; COPPER-OXIDE; CARBOHYDRATE OXIDATION; FACILE SYNTHESIS; SIMPLE ROUTE; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; SENSOR;
D O I
10.1039/c3cp50922b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For the first time, a facile, one-pot water/ethanol solution-phase transformation of Cu-2(NO3)(OH)(3) precursors into bicomponent CuO hierarchical nanoflowers is demonstrated by a sequential in situ dissolution-precipitation formation mechanism. The first stage produces a precursory crystal (monoclinic Cu-2(NO3)(OH)(3)) that is transformed into monoclinic CuO nanoflowers during the following stage. Water is a required reactant, and the morphology-controlled growth of CuO nanostructures can be readily achieved by adjusting the volume ratio between water and ethanol. Such a bicomponent CuO hierarchical nanoflower serving as a promising electrode material for a nonenzymatic glucose biosensor shows higher sensitivity and excellent selectivity. The findings reveal that the different CuxMy(OH)(z) (M = acidic radical) precursors synthesized in a water/ethanol reaction environment can be utilized to obtain new forms of CuO nanomaterials, and this unique water-dependent precursor-transformation method may be used to effectively control the growth of other metal oxide nanostructures.
引用
收藏
页码:10904 / 10913
页数:10
相关论文
共 62 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Chemistry and properties of nanocrystals of different shapes [J].
Burda, C ;
Chen, XB ;
Narayanan, R ;
El-Sayed, MA .
CHEMICAL REVIEWS, 2005, 105 (04) :1025-1102
[3]   A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods [J].
Cao, MH ;
Hu, CW ;
Wang, YH ;
Guo, YH ;
Guo, CX ;
Wang, EB .
CHEMICAL COMMUNICATIONS, 2003, (15) :1884-1885
[4]   A study on the photoelectrochemical properties of copper oxide thin films [J].
Chaudhary, YS ;
Agrawal, A ;
Shrivastav, R ;
Satsangi, VR ;
Dass, S .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (02) :131-134
[5]   Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries [J].
Chen, L. B. ;
Lu, N. ;
Xu, C. M. ;
Yu, H. C. ;
Wang, T. H. .
ELECTROCHIMICA ACTA, 2009, 54 (17) :4198-4201
[6]   The transformation of Cu(OH)2 into CuO, revisited [J].
Cudennec, Y ;
Lecerf, A .
SOLID STATE SCIENCES, 2003, 5 (11-12) :1471-1474
[7]   Crystallographical and chemical hypothesis for the formation process of CuO(s) and Cu(OH)2(s) from Na2Cu(OH)4(s). [J].
Cudennec, Y ;
Riou, A ;
Gérault, Y ;
Lecerf, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE C-CHIMIE, 2000, 3 (08) :661-666
[8]   Geometrical effect of CuO nanostructures on catalytic benzene combustion [J].
Fei, Zhaoyang ;
Lu, Ping ;
Feng, Xinzhen ;
Sun, Bo ;
Ji, Weijie .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (08) :1705-1710
[9]   Room-Temperature Ferromagnetism of Flowerlike CuO Nanostructures [J].
Gao, Daqiang ;
Yang, Guijin ;
Li, Jinyun ;
Zhang, Jing ;
Zhang, Jinlin ;
Xue, Desheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (43) :18347-18351
[10]   Field emission from various CuO nanostructures [J].
Hsieh, CT ;
Chen, JM ;
Lin, HH ;
Shih, HC .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3383-3385