Fractional Skellam processes with applications to finance

被引:30
|
作者
Kerss, Alexander [1 ]
Leonenko, Nikolai N. [1 ]
Sikorskii, Alla [2 ]
机构
[1] Cardiff Univ, Cardiff Sch Math, Cardiff CF24 4 YH, S Glam, Wales
[2] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
fractional Poisson process; fractional Skellam process; Mittag-Leffler distribution; high frequency financial data; POISSON; EQUATIONS;
D O I
10.2478/s13540-014-0184-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent literature on high frequency financial data includes models that use the difference of two Poisson processes, and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by data. Fractional generalization of Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on fractional Skellam processes.
引用
收藏
页码:532 / 551
页数:20
相关论文
共 50 条
  • [1] Fractional Skellam processes with applications to finance
    Alexander Kerss
    Nikolai N. Leonenko
    Alla Sikorskii
    Fractional Calculus and Applied Analysis, 2014, 17 : 532 - 551
  • [2] Noncentral moderate deviations for fractional Skellam processes
    Lee, Jeonghwa
    Macci, Claudio
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 43 - 61
  • [3] Skellam and time-changed variants of the generalized fractional counting process
    Kataria, Kuldeep Kumar
    Khandakar, Mostafizar
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1873 - 1907
  • [4] On the convolution of Mittag-Leffler distributions and its applications to fractional point processes
    Kataria, Kuldeep Kumar
    Vellaisamy, Palaniappan
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (01) : 115 - 122
  • [5] Parameter estimation for fractional birth and fractional death processes
    Cahoy, Dexter O.
    Polito, Federico
    STATISTICS AND COMPUTING, 2014, 24 (02) : 211 - 222
  • [6] Fractional pure birth processes
    Orsingher, Enzo
    Polito, Federico
    BERNOULLI, 2010, 16 (03) : 858 - 881
  • [7] Filtered fractional Poisson processes
    Rao, B. L. S. Prakasa
    STATISTICAL METHODOLOGY, 2015, 26 : 124 - 134
  • [8] CORRELATED FRACTIONAL COUNTING PROCESSES ON A FINITE-TIME INTERVAL
    Beghin, Luisa
    Garra, Roberto
    Macci, Claudio
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (04) : 1045 - 1061
  • [9] Optimal control of ultradiffusion processes with application to mathematical finance
    Marcozzi, Michael D.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (02) : 296 - 318
  • [10] CDS pricing with fractional Hawkes processes
    Ketelbuters, John-John
    Hainaut, Donatien
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 297 (03) : 1139 - 1150