Hidden Nambu mechanics: A variant formulation of Hamiltonian systems

被引:8
|
作者
Horikoshi, Atsushi [1 ]
Kawamura, Yoshiharu [2 ]
机构
[1] Tokyo City Univ, Dept Nat Sci, Tokyo 1588557, Japan
[2] Shinshu Univ, Dept Phys, Matsumoto, Nagano 3908621, Japan
来源
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS | 2013年 / 2013卷 / 07期
关键词
QUANTIZATION;
D O I
10.1093/ptep/ptt043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a variant formulation of Hamiltonian systems by the use of variables including redundant degrees of freedom. We show that Hamiltonian systems can be described by extended dynamics whose master equation is the Nambu equation or its generalization. Partition functions associated with the extended dynamics in many degrees of freedom systems are given. Our formulation can also be applied to Hamiltonian systems with first class constraints.
引用
收藏
页数:20
相关论文
共 47 条
  • [21] Schrodinger Quantization of Infinite-Dimensional Hamiltonian Systems with a Nonquadratic Hamiltonian Function
    Smolyanov, O. G.
    Shamarov, N. N.
    DOKLADY MATHEMATICS, 2020, 101 (03) : 227 - 230
  • [22] On the path integral formulation of Wigner-Dunkl quantum mechanics
    Junker, Georg
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (07)
  • [23] Faddeev-Jackiw Hamiltonian formulation for general exotic bi-gravity
    Rodriguez-Tzompantzi, Omar
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (07):
  • [24] Schrödinger Quantization of Infinite-Dimensional Hamiltonian Systems with a Nonquadratic Hamiltonian Function
    O. G. Smolyanov
    N. N. Shamarov
    Doklady Mathematics, 2020, 101 : 227 - 230
  • [25] A canonical formulation of dissipative mechanics using complex-valued hamiltonians
    Rajeev, S. G.
    ANNALS OF PHYSICS, 2007, 322 (07) : 1541 - 1555
  • [26] Resolution-scale relativistic formulation of non-differentiable mechanics
    Teh, Mei-Hui
    Nottale, Laurent
    LeBohec, Stephan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (09)
  • [27] Recent advances in the monodromy theory of integrable Hamiltonian systems
    Martynchuk, N.
    Broer, H. W.
    Efstathiou, K.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (01): : 193 - 223
  • [28] Hamiltonian Structures in the Quantum Theory of Hamilton-Dirac Systems
    Ratiu, T. S.
    Smolyanov, O. G.
    DOKLADY MATHEMATICS, 2015, 91 (01) : 68 - 71
  • [29] Active systems with Nambu dynamics: with applications to rod wielding for haptic length perception and self-propagating systems on two-spheres
    Frank, T. D.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (02) : 195 - 203
  • [30] Some Mathematical Considerations on Solid State Physics in the Framework of the Phase Space Formulation of Quantum Mechanics
    G. Alì
    R. Beneduci
    G. Mascali
    F. E. Schroeck
    J. J. Sławianowski
    International Journal of Theoretical Physics, 2014, 53 : 3546 - 3574