Hidden Nambu mechanics: A variant formulation of Hamiltonian systems

被引:8
作者
Horikoshi, Atsushi [1 ]
Kawamura, Yoshiharu [2 ]
机构
[1] Tokyo City Univ, Dept Nat Sci, Tokyo 1588557, Japan
[2] Shinshu Univ, Dept Phys, Matsumoto, Nagano 3908621, Japan
关键词
QUANTIZATION;
D O I
10.1093/ptep/ptt043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a variant formulation of Hamiltonian systems by the use of variables including redundant degrees of freedom. We show that Hamiltonian systems can be described by extended dynamics whose master equation is the Nambu equation or its generalization. Partition functions associated with the extended dynamics in many degrees of freedom systems are given. Our formulation can also be applied to Hamiltonian systems with first class constraints.
引用
收藏
页数:20
相关论文
共 25 条
[1]  
[Anonymous], 2012, The principles of quantum mechanics
[2]  
Awata H, 2001, J HIGH ENERGY PHYS
[3]   REMARKS CONCERNING NAMBUS GENERALIZED MECHANICS [J].
BAYEN, F ;
FLATO, M .
PHYSICAL REVIEW D, 1975, 11 (10) :3049-3053
[4]   Aspects of classical and quantum Nambu mechanics [J].
Chatterjee, R ;
Takhtajan, L .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (04) :475-482
[5]   NAMBUS GENERALIZED HAMILTONIAN MECHANICS [J].
COHEN, I ;
KALNAY, AJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1975, 12 (01) :61-67
[6]   Classical and quantum Nambu mechanics [J].
Curtright, T ;
Zachos, C .
PHYSICAL REVIEW D, 2003, 68 (08)
[7]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02) :129-148
[8]   Generalized Abelian deformations: Application to Nambu mechanics [J].
Dito, G ;
Flato, M .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (02) :107-125
[9]   Deformation quantization and Nambu Mechanics [J].
Dito, G ;
Flato, M ;
Sternheimer, D ;
Takhtajan, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (01) :1-22
[10]   Some remarks concerning Nambu mechanics [J].
Gautheron, P .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (01) :103-116