Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

被引:33
|
作者
Wu, Jincheng [1 ]
Tzanakakis, Emmanuel S. [1 ,2 ,3 ,4 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA
[3] New York State Ctr Excellence Bioinformat & Life, Buffalo, NY 14203 USA
[4] SUNY Buffalo, Western New York Stem Cell Culture & Anal Ctr, Buffalo, NY 14214 USA
基金
美国国家卫生研究院;
关键词
Human embryonic stem cells; Induced pluripotent stem cells; Heterogeneity; Single-cell analysis; Time-lapse microscopy; Flow cytometry; Multiple displacement amplification; Mass cytometry; Stochastic multiscale model; Gene expression noise; STOCHASTIC GENE-EXPRESSION; OLIGONUCLEOTIDE MICROARRAY ANALYSIS; IN-VIVO; RNA-SEQ; BALANCE MODELS; SELF-RENEWAL; RAMAN MICROSPECTROSCOPY; MICROFLUIDIC PLATFORMS; PHENOTYPIC DIVERSITY; REGULATORY NETWORKS;
D O I
10.1016/j.biotechadv.2013.09.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1047 / 1062
页数:16
相关论文
共 50 条
  • [41] Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity
    McKinley, Eliot T.
    Sui, Yunxia
    Al-Kofahi, Yousef
    Millis, Bryan A.
    Tyska, Matthew J.
    Roland, Joseph T.
    Santamaria-Pang, Alberto
    Ohland, Christina L.
    Jobin, Christian
    Franklin, Jeffrey L.
    Lau, Ken S.
    Gerdes, Michael J.
    Coffey, Robert J.
    JCI INSIGHT, 2017, 2 (11)
  • [42] Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis
    Derakhshan, Tahereh
    Boyce, Joshua A.
    Dwyer, Daniel F.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2022, 150 (04) : 739 - 747
  • [43] Single-Cell Analysis Uncovers Clonal Acinar Cell Heterogeneity in the Adult Pancreas
    Wollny, Damian
    Zhao, Sheng
    Everlien, Isabelle
    Lun, Xiaokang
    Brunken, Jan
    Bruene, Daniel
    Ziebell, Frederik
    Tabansky, Inna
    Weichert, Wilko
    Marciniak-Czochra, Anna
    Martin-Villalba, Ana
    DEVELOPMENTAL CELL, 2016, 39 (03) : 289 - 301
  • [44] Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity
    Jarousek, Radim
    Mikulova, Antonia
    Dad'ova, Petra
    Taus, Petr
    Kurucova, Terezia
    Plevova, Karla
    Tichy, Boris
    Kubala, Lukas
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2022, 1869 (10):
  • [45] Single-cell and spatially resolved analysis uncovers cell heterogeneity of breast cancer
    Si-Qing Liu
    Zhi-Jie Gao
    Juan Wu
    Hong-Mei Zheng
    Bei Li
    Si Sun
    Xiang-Yu Meng
    Qi Wu
    Journal of Hematology & Oncology, 15
  • [46] New approaches to single-cell analysis by capillary electrophoresis
    Zabzdyr, JL
    Lillard, SJ
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2001, 20 (09) : 467 - 476
  • [47] Editorial: B cell heterogeneity in the single-cell era
    Cordero, Hector
    Perdiguero, Pedro
    Zorn, Emmanuel
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [48] Bioinformatics approaches to single-cell analysis in developmental biology
    Yalcin, Dicle
    Hakguder, Zeynep M.
    Otu, Hasan H.
    MOLECULAR HUMAN REPRODUCTION, 2016, 22 (03) : 182 - 192
  • [49] The Impact of Heterogeneity on Single-Cell Sequencing
    Goldman, Samantha L.
    MacKay, Matthew
    Afshinnekoo, Ebrahim
    Melnick, Ari M.
    Wu, Shuxiu
    Mason, Christopher E.
    FRONTIERS IN GENETICS, 2019, 10
  • [50] Single-cell heterogeneity in Sezary syndrome
    Buus, Terkild Brink
    Willerslev-Olsen, Andreas
    Fredholm, Simon
    Blumel, Edda
    Nastasi, Claudia
    Gluud, Maria
    Hu, Tengpeng
    Lindahl, Lise M.
    Iversen, Lars
    Fogh, Hanne
    Gniadecki, Robert
    Litvinov, Ivan V.
    Persson, Jenny L.
    Bonefeld, Charlotte Menne
    Geisler, Carsten
    Christensen, Jan Praysgaard
    Krejsgaard, Thorbjorn
    Litman, Thomas
    Woetmann, Anders
    Odum, Niels
    BLOOD ADVANCES, 2018, 2 (16) : 2115 - 2126