Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment

被引:193
作者
Assanhou, Assogba G. [1 ,2 ,3 ,4 ]
Li, Wenyuan [5 ]
Zhang, Lei [1 ,2 ]
Xue, Lingjing [1 ,2 ]
Kong, Lingyi [1 ,2 ]
Sun, Hongbin [1 ,2 ]
Mo, Ran [1 ,2 ]
Zhang, Can [1 ,2 ]
机构
[1] China Pharmaceut Univ, State Key Lab Nat Med, Nanjing 210009, Jiangsu, Peoples R China
[2] China Pharmaceut Univ, Jiangsu Key Lab Drug Discovery Metab Dis, Ctr Drug Discovery, Nanjing 210009, Jiangsu, Peoples R China
[3] Univ Abomey Calavi, Fac Sci Sante, UFR Pharm, Cotonou, Benin
[4] China Pharmaceut Univ, Jiangsu Key Lab Drug Screening, Nanjing 210009, Jiangsu, Peoples R China
[5] Monash Univ, Fac Pharm & Pharmaceut Sci, Parkville, Vic 3052, Australia
基金
中国国家自然科学基金;
关键词
Liposome; Paclitaxel; Lonidamine; Combination therapy; Multidrug resistance; DRUG-RESISTANCE; THERAPEUTIC-EFFICACY; P-GLYCOPROTEIN; CELLS; MECHANISMS; INHIBITION; NANOPARTICLES; METASTASIS; STRATEGIES; SAFETY;
D O I
10.1016/j.biomaterials.2015.09.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multidrug resistance (MDR) remains the primary issue in cancer therapy, which is characterized by the overexpressed P-glycoprotein (P-gp)-included efflux pump or the upregulated anti-apoptotic proteins. In this study, a D-alpha-tocopheryl poly (ethylene glycol 1000) succinate (TPGS) and hyaluronic acid (HA) dual-functionalized cationic liposome containing a synthetic cationic lipid, 1,5-dioctadecyl-N-histidyl-L-glutamate (HG2C(18)) was developed for co-delivery of a small-molecule chemotherapeutic drug, paclitaxel (PD() with a chemosensitizing agent, lonidamine (LND) to treat the MDR cancer. It was demonstrated that the HG2C(18) lipid contributes to the endo-lysosomal escape of the liposome following internalization for efficient intracellular delivery. The TPGS component was confirmed able to elevate the intracellular accumulation of PTX by inhibiting the P-gp efflux, and to facilitate the mitochondrial-targeting of the liposome. The intracellularly released LND suppressed the intracellular ATP production by interfering with the mitochondrial function for enhanced P-gp inhibition, and additionally, sensitized the MDR breast cancer (MCF-7/MDR) cells to PTX for promoted induction of apoptosis through a synergistic effect. Functionalized with the outer HA shell, the liposome preferentially accumulated at the tumor site and showed a superior antitumor efficacy in the xenograft MCF-7/MDR tumor mice models. These findings suggest that this dual-functional liposome for co-delivery of a cytotoxic drug and an MDR modulator provides a promising strategy for reversal of MDR in cancer treatment. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 295
页数:12
相关论文
共 55 条
[1]   Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity [J].
Akunuru, S. ;
Zhai, Q. James ;
Zheng, Y. .
CELL DEATH & DISEASE, 2012, 3 :e352-e352
[2]  
Apte S., 2010, J. Excip. Food Chem, V1, P51
[3]   Multiple Drug Resistance Mechanisms in Cancer [J].
Baguley, Bruce C. .
MOLECULAR BIOTECHNOLOGY, 2010, 46 (03) :308-316
[4]   Safety, Pharmacokinetics, and Efficacy of CPX-1 Liposome Injection in Patients with Advanced Solid Tumors [J].
Batist, Gerald ;
Gelmon, Karen A. ;
Chi, Kim N. ;
Miller, Wilson H., Jr. ;
Chia, Stephen K. L. ;
Mayer, Lawrence D. ;
Swenson, Christine E. ;
Janoff, Andrew S. ;
Louie, Arthur C. .
CLINICAL CANCER RESEARCH, 2009, 15 (02) :692-700
[5]   Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers [J].
Batrakova, Elena V. ;
Kabanov, Alexander V. .
JOURNAL OF CONTROLLED RELEASE, 2008, 130 (02) :98-106
[6]  
Bertrand P, 1997, INT J CANCER, V73, P327, DOI 10.1002/(SICI)1097-0215(19971104)73:3<327::AID-IJC4>3.0.CO
[7]  
2-1
[8]   Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy? [J].
Callaghan, Richard ;
Luk, Frederick ;
Bebawy, Mary .
DRUG METABOLISM AND DISPOSITION, 2014, 42 (04) :623-631
[9]   CD44 targets Na+/H+ exchanger 1 to mediate MDA-MB-231 cells' metastasis via the regulation of ERK1/2 [J].
Chang, G. ;
Wang, J. ;
Zhang, H. ;
Zhang, Y. ;
Wang, C. ;
Xu, H. ;
Zhang, H. ;
Lin, Y. ;
Ma, L. ;
Li, Q. ;
Pang, T. .
BRITISH JOURNAL OF CANCER, 2014, 110 (04) :916-927
[10]   PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo [J].
Choi, Ki Young ;
Min, Kyung Hyun ;
Yoon, Hong Yeol ;
Kim, Kwangmeyung ;
Park, Jae Hyung ;
Kwon, Ick Chan ;
Choi, Kuiwon ;
Jeong, Seo Young .
BIOMATERIALS, 2011, 32 (07) :1880-1889