THE TAME KERNEL OF MULTIQUADRATIC NUMBER FIELDS

被引:9
|
作者
Zhou, Haiyan [1 ]
机构
[1] Nanjing Normal Univ, Dept Math, Nanjing 210097, Peoples R China
关键词
Multiquadratic fields; Tame kernels; Wild kernels; QUADRATIC FIELDS; WILD KERNELS; K2OF;
D O I
10.1080/00927870802254801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F/K be a Galois extension of a number field of degree n, (sic)(F) the ring of integers in F, and p a prime number which does not divide n. Let K(2) denote the Milnor K-functor. In this article, we shall study the structure of the odd part of the tame kernel K(2)(sic)(F) of F by using the intermediate fields of F/K. In particular, for a multiquadratic field F, we shall get the p(i)-rank, (i > 0) of K(2)(sic)(F). Finally, we shall determine the structure of the odd parts of K(2)(sic)(F) when F = (sic)(root d, root d(1)), where -100 < d < 0, d(1) = 2, 3, 5, 7.
引用
收藏
页码:630 / 638
页数:9
相关论文
共 50 条
  • [31] On the class number divisibility of pairs of imaginary quadratic fields
    Iizuka, Yoshichika
    JOURNAL OF NUMBER THEORY, 2018, 184 : 122 - 127
  • [32] On l-torsion in class groups of number fields
    Ellenberg, Jordan
    Pierce, Lillian B.
    Wood, Melanie Matchett
    ALGEBRA & NUMBER THEORY, 2017, 11 (08) : 1739 - 1778
  • [33] On real quadratic number fields and simultaneous diophantine approximation
    Burger, EB
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (03): : 201 - 209
  • [34] Group Theory and the Capitulation Problem for Some Number Fields
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    NON-ASSOCIATIVE AND NON-COMMUTATIVE ALGEBRA AND OPERATOR THEORY, NANCAOT, 2016, 160 : 3 - 26
  • [35] ON QUATERNION ALGEBRAS OVER THE COMPOSITE OF QUADRATIC NUMBER FIELDS
    Acciaro, Vincenzo
    Savin, Diana
    Taous, Mohammed
    Zekhnini, Abdelkader
    GLASNIK MATEMATICKI, 2021, 56 (01) : 63 - 78
  • [36] ON PRO-p LINK GROUPS OF NUMBER FIELDS
    Mizusawa, Yasushi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (10) : 7225 - 7254
  • [37] A finer classification of the unit sum number of the ring of integers of quadratic fields and complex cubic fields
    Nahid Ashrafi
    Proceedings - Mathematical Sciences, 2009, 119 : 267 - 274
  • [38] ON THE NUMBER OF ELLIPTIC CURVES WITH PRESCRIBED ISOGENY OR TORSION GROUP OVER NUMBER FIELDS OF PRIME DEGREE
    Najman, Filip
    GLASGOW MATHEMATICAL JOURNAL, 2015, 57 (02) : 465 - 473
  • [39] A finer classification of the unit sum number of the ring of integers of quadratic fields and complex cubic fields
    Ashrafi, Nahid
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (03): : 267 - 274
  • [40] On quaternion algebras over some extensions of quadratic number fields
    Acciaro, V
    Savin, D.
    Taous, M.
    Zekhnini, A.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):