Simulation of the observability of atomic defects by atomic force microscopy in contact and non-contact modes

被引:5
|
作者
Sokolov, IY [1 ]
Henderson, GS
机构
[1] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA
[2] Univ Toronto, Dept Geol, Toronto, ON M5S 3B1, Canada
关键词
atomic force microscopy; surface defects; computer simulations; atom-solid interactions;
D O I
10.1016/S0039-6028(01)01763-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic force microscopy (AFM) scans of a crystal surface containing an atomic defect were simulated in both contact and non-contact regimes. When scanning in contact mode near a defect, the tip-sample force interaction experiences bifurcation of the lines of constant force. When the load force is small, the bifurcation causes the tip to be 'pushed" out of the defect. However, if scan force is higher than some critical value (dependent upon the composition of the tip and sample) the AFM tip becomes "trapped" in the vicinity of defect. The trapped tip remains at the level of the vacancy and consequently crashes into the sample, as the scan continues. This results in either the tip apex being destroyed, or disruption of the crystal lattice around the defect. Both effects result in the "disappearance" of the defect from the scan images. The trap is intrinsic and cannot be avoided. For the case of non-contact mode, the tip position is driven by the scan force gradient rather than the force. Simulations show that for this case the trap does not exist and atomic defects will not be destroyed. This explains why atomic defects are generally not observed when using contact mode AFM, but are observed in non-contact AFM. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 50 条
  • [21] Soft Contact Lens Surface Profile by Atomic Force Microscopy
    Giraldez, Maria J.
    Serra, Carmen
    Lira, Madalena
    Real Oliveira, M. Elisabete C. D.
    Yebra-Pimentel, Eva
    OPTOMETRY AND VISION SCIENCE, 2010, 87 (07) : E475 - E481
  • [22] Quantitative contact spectroscopy by atomic-force acoustic microscopy
    Amelio, S
    Rabe, U
    Kester, E
    Hirsekorn, S
    Arnold, W
    MICRO MATERIALS, PROCEEDINGS, 2000, : 340 - 343
  • [23] Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy
    Rosenberger, Matthew R.
    Chen, Sihan
    Prater, Craig B.
    King, William P.
    NANOTECHNOLOGY, 2017, 28 (04)
  • [24] Atomic Observation on Diamond (001) Surfaces with Near-Contact Atomic Force Microscopy
    Zhang, Runnan
    Yasui, Yuuki
    Fukuda, Masahiro
    Ozaki, Taisuke
    Ogura, Masahiko
    Makino, Toshiharu
    Takeuchi, Daisuke
    Sugimoto, Yoshiaki
    NANO LETTERS, 2025, 25 (03) : 1101 - 1107
  • [25] High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation
    Kouchaksaraei, Mostafa Ghanbari
    Bahrami, Arash
    ULTRAMICROSCOPY, 2021, 227
  • [26] Non-contact Quantification of Laser Micro-impulse in Water by Atomic Force Microscopy and Its Application for Bio-mechanics
    Hosokawa, Yoichiroh
    SMART NANO-MICRO MATERIALS AND DEVICES, 2011, 8204
  • [27] CONTACT STIFFNESS CALIBRATION PLATFORM FOR NANOMECHANICAL PROPERTY MEASUREMENTS WITH CONTACT RESONANCE ATOMIC FORCE MICROSCOPY
    Rosenberger, M. R.
    Chen, S.
    Prater, C. B.
    King, W. P.
    2015 TRANSDUCERS - 2015 18TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2015, : 1235 - 1238
  • [28] Nanomechanical measurements on polymers using contact mode atomic force microscopy
    Lemoine, P
    McLaughlin, JM
    THIN SOLID FILMS, 1999, 339 (1-2) : 258 - 264
  • [29] Manipulation of carbon nanotube bundles with contact mode atomic force microscopy
    Shen, Ziyong
    Liu, Saijin
    Hou, Shimin
    Xue, Zengquan
    International Journal of Nanoscience, Vol 1, Nos 5 and 6, 2002, 1 (5-6): : 575 - 579
  • [30] Quantitative determination of contact stiffness using atomic force acoustic microscopy
    Rabe, U
    Amelio, S
    Kester, E
    Scherer, V
    Hirsekorn, S
    Arnold, W
    ULTRASONICS, 2000, 38 (1-8) : 430 - 437