Weyl Quantization from geometric quantization

被引:0
作者
Rios, P. de M. [1 ]
Tuynman, G. M. [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, ICMC, Cx Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Lille 1, UFR Math, CNRS Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
来源
GEOMETRIC METHODS IN PHYSICS | 2008年 / 1079卷
关键词
Weyl quantization; geometric quantization; groupoids; symmetric symplectic spaces;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In [1] a nice looking formula is conjectured for a deformed product of functions on a symplectic manifold in case it concerns a hermitian symmetric space of non-compact type. We derive such a formula for simply connected symmetric symplectic spaces using ideas from geometric quantization and prequantization of symplectic groupoids. We compute the result explicitly for the natural 2-dimensional symplectic manifolds R-2, H-2, and S-2. For R-2 we obtain the well known Moyal-Weyl product. The other cases show that the original idea in [1] should be interpreted with care.
引用
收藏
页码:26 / +
页数:3
相关论文
共 50 条
[31]   Geometric quantization of reduced cotangent bundles [J].
Robson, MA .
JOURNAL OF GEOMETRY AND PHYSICS, 1996, 19 (03) :207-245
[32]   On geometric quantization of the Dirac magnetic monopole [J].
Kemp, Graham M. ;
Veselov, Alexander P. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (01) :34-42
[33]   Geometric Quantization of Relativistic Hamiltonian Mechanics [J].
G. Sardanashvily .
International Journal of Theoretical Physics, 2003, 42 :697-704
[34]   Geometric quantization and families of inner products [J].
Hochs, Peter ;
Mathai, Varghese .
ADVANCES IN MATHEMATICS, 2015, 282 :362-426
[35]   Geometric Quantization on Kahler and Symplectic Manifolds [J].
Ma, Xiaonan .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, :785-810
[36]   On geometric quantization of the Dirac magnetic monopole [J].
Graham M. Kemp ;
Alexander P. Veselov .
Journal of Nonlinear Mathematical Physics, 2014, 21 :34-42
[37]   Anti-Wick and Weyl quantization on ultradistribution spaces [J].
Pilipovic, S. ;
Prangoski, B. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02) :472-503
[38]   A CONTRACTION OF THE PRINCIPAL SERIES BY BEREZIN-WEYL QUANTIZATION [J].
Cahen, Benjamin .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (02) :417-441
[39]   Berezin-Weyl quantization for Cartan motion groups [J].
Cahen, Benjamin .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (01) :127-137
[40]   Re-explanation of Weyl Quantization Scheme via Weyl Ordering Approach [J].
Fan Hong-Yi .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (05) :1089-1092