Weyl Quantization from geometric quantization

被引:0
|
作者
Rios, P. de M. [1 ]
Tuynman, G. M. [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, ICMC, Cx Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Lille 1, UFR Math, CNRS Paul Painleve, UMR 8524, F-59655 Villeneuve Dascq, France
来源
GEOMETRIC METHODS IN PHYSICS | 2008年 / 1079卷
关键词
Weyl quantization; geometric quantization; groupoids; symmetric symplectic spaces;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In [1] a nice looking formula is conjectured for a deformed product of functions on a symplectic manifold in case it concerns a hermitian symmetric space of non-compact type. We derive such a formula for simply connected symmetric symplectic spaces using ideas from geometric quantization and prequantization of symplectic groupoids. We compute the result explicitly for the natural 2-dimensional symplectic manifolds R-2, H-2, and S-2. For R-2 we obtain the well known Moyal-Weyl product. The other cases show that the original idea in [1] should be interpreted with care.
引用
收藏
页码:26 / +
页数:3
相关论文
共 50 条
  • [1] Shifted geometric quantization
    Safronov, Pavel
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 194
  • [2] Boundedness of Weyl quantization
    Qi, MY
    Chen, WY
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (01) : 111 - 122
  • [3] BOUNDEDNESS OF WEYL QUANTIZATION
    QI MINYOU(M.Y.CHI)
    CHEN WENYI(Institute of Mathematics
    Chinese Annals of Mathematics, 1999, (01) : 3 - 5
  • [4] Weyl quantization for semidirect products
    Cahen, Benjamin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (02) : 177 - 190
  • [5] Weyl quantization and star products
    Bowes, D
    Hannabuss, KC
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (04) : 319 - 348
  • [6] Quantization in fibering polarizations, Mabuchi rays and geometric Peter-Weyl theorem
    Baier, Thomas
    Hilgert, Joachim
    Kaya, Oguzhan
    Mourao, Jose M.
    Nunes, Joao P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 207
  • [7] FORMAL GEOMETRIC QUANTIZATION
    Paradan, Paul-Emile
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (01) : 199 - 238
  • [8] Time and Geometric Quantization
    Abrikosov, AA
    Gozzi, E
    Mauro, D
    MODERN PHYSICS LETTERS A, 2003, 18 (33-35) : 2347 - 2354
  • [9] LECTURES ON GEOMETRIC QUANTIZATION
    Sniatycki, Jedrzej
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 95 - 129
  • [10] Projective fourier duality and Weyl quantization
    R. Aldrovandi
    L. A. Saeger
    International Journal of Theoretical Physics, 1997, 36 : 573 - 612