Integrable Lotka-Volterra systems

被引:26
|
作者
Bogoyavlenskij, O. I. [1 ,2 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2008年 / 13卷 / 06期
关键词
Lax representation; Hamiltonian structures; Casimir functions; Riemannian surfaces; Lotka-Volterra systems; integrable lattices;
D O I
10.1134/S1560354708060051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Infinite- and finite-dimensional lattices of Lotka-Volterra type are derived that possess Lax representations and have large families of first integrals. The obtained systems are Hamiltonian and contain perturbations of Volterra lattice. Examples of Liouville-integrable 4-dimensional Hamiltonian Lotka-Volterra systems are presented. Several 5-dimensional Lotka- Volterra systems are found that have Lax representations and are Liouville-integrable on constant levels of Casimir functions.
引用
收藏
页码:543 / 556
页数:14
相关论文
共 50 条