Integrable Lotka-Volterra systems

被引:26
|
作者
Bogoyavlenskij, O. I. [1 ,2 ]
机构
[1] Queens Univ, Dept Math, Kingston, ON K7L 3N6, Canada
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
关键词
Lax representation; Hamiltonian structures; Casimir functions; Riemannian surfaces; Lotka-Volterra systems; integrable lattices;
D O I
10.1134/S1560354708060051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Infinite- and finite-dimensional lattices of Lotka-Volterra type are derived that possess Lax representations and have large families of first integrals. The obtained systems are Hamiltonian and contain perturbations of Volterra lattice. Examples of Liouville-integrable 4-dimensional Hamiltonian Lotka-Volterra systems are presented. Several 5-dimensional Lotka- Volterra systems are found that have Lax representations and are Liouville-integrable on constant levels of Casimir functions.
引用
收藏
页码:543 / 556
页数:14
相关论文
共 50 条
  • [1] Integrable Lotka-Volterra systems
    O. I. Bogoyavlenskij
    Regular and Chaotic Dynamics, 2008, 13 : 543 - 556
  • [2] Integrable deformations of Lotka-Volterra systems
    Ballesteros, Angel
    Blasco, Alfonso
    Musso, Fabio
    PHYSICS LETTERS A, 2011, 375 (38) : 3370 - 3374
  • [3] A NEW CLASS OF INTEGRABLE LOTKA-VOLTERRA SYSTEMS
    Christodoulidi, Helen
    Hone, Andrew N. W.
    Kouloukas, Theodoros E.
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 223 - 237
  • [4] Global observer for Lotka-Volterra systems
    Badri, Vahid
    SYSTEMS & CONTROL LETTERS, 2022, 167
  • [5] Impulsive control of multiple Lotka-Volterra systems
    Dong, Lingzhen
    Takeuchi, Yasuhiro
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (02) : 1144 - 1154
  • [6] THE EFFECT OF DELAYS ON THE PERMANENCE FOR LOTKA-VOLTERRA SYSTEMS
    CHEN, LS
    LU, ZY
    WANG, WD
    APPLIED MATHEMATICS LETTERS, 1995, 8 (04) : 71 - 73
  • [7] Representation of neural networks as Lotka-Volterra systems
    Moreau, Y
    Louiès, S
    Vandewalle, J
    Brenig, L
    COMPUTING ANTICIPATORY SYSTEMS, 1999, 465 : 155 - 167
  • [8] Permanence for Lotka-Volterra systems with multiple delays
    Lu, Guichen
    Lu, Zhengyi
    Enatsu, Yoichi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2552 - 2560
  • [9] ON EVENTUAL BOUNDEDNESS OF LOTKA-VOLTERRA ECOLOGICAL-SYSTEMS
    HU, SG
    LI, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (10) : 917 - 928
  • [10] A Modified Algorithm for Approximate Solutions of Lotka-Volterra systems
    Ruan, Jing
    Tan, Yanhua
    Zhang, Changsheng
    CEIS 2011, 2011, 15