Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau

被引:326
作者
Zhang, Leilei [1 ,2 ]
Su, Fengge [2 ]
Yang, Daqing [3 ]
Hao, Zhenchun [1 ]
Tong, Kai [2 ]
机构
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Key Lab Tibetan Environm Changes & Land Surface P, Inst Tibetan Plateau Res, Beijing 100101, Peoples R China
[3] Environm Canada, Natl Hydrol Res Ctr, Saskatoon, SK, Canada
基金
中国国家自然科学基金;
关键词
discharge; glacier runoff; Tibetan Plateau; hydroclimatology; snow runoff; rainfall runoff; GRIDDED PRECIPITATION DATASET; RECENT GLACIAL RETREAT; CLIMATE-CHANGE; WATER AVAILABILITY; DENSE NETWORK; VIC-2L MODEL; RUNOFF; IMPACT; SNOW; TEMPERATURE;
D O I
10.1002/jgrd.50665
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The hydrological regimes for the major river basins in the Tibetan Plateau (TP), including the source regions of the Yellow (UYE), Yangtze (UYA), Mekong (UM), Salween (US), Brahmaputra (UB), and Indus (UI) rivers, were investigated through a land surface model and regression analyses between climate variables and runoff data. A hydrologic modeling framework was established across the TP to link the Variable Infiltration Capacity (VIC) land surface hydrology model with a degree-day glacier-melt scheme (VIC-glacier model) at a 1/12 degrees x1/12 degrees. The model performance was evaluated over the upper basins of the six rivers. The heterogeneity and scarcity of the meteorological stations are the major limitation for hydrological modeling over the TP. The relative contributions to streamflow from rainfall, snowmelt, and glacier melt for the six basins were quantified via the model framework and simulation. The results suggest that monsoon precipitation has a dominant role in sustaining seasonal streamflow over southeastern regions, contributing 65-78% of annual runoff among the UYE, UYA, UM, US, and UB basins. For the UI, the runoff regime is largely controlled by the glacier melt and snow cover in spring and summer. The contribution of glacier runoff is minor for the UYE and UM (less than 2% of total annual flow), and moderate for the UYA and US basins (5-7% of yearly flow), while glacier melt makes up about 12% and 48% of annual flow for the UB and UI basins, respectively.
引用
收藏
页码:8500 / 8518
页数:19
相关论文
共 86 条
[1]   The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios [J].
Akhtar, M. ;
Ahmad, N. ;
Booij, M. J. .
JOURNAL OF HYDROLOGY, 2008, 355 (1-4) :148-163
[2]  
[Anonymous], 2000, GEOCRYOLOGY CHINA
[3]   Contrasting hydrological regimes in the upper Indus Basin [J].
Archer, D .
JOURNAL OF HYDROLOGY, 2003, 274 (1-4) :198-210
[4]  
Arendt A., 2012, Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines
[5]   The physical basis of glacier volume-area scaling [J].
Bahr, DB ;
Meier, MF ;
Peckham, SD .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B9) :20355-20362
[6]   Potential impacts of a warming climate on water availability in snow-dominated regions [J].
Barnett, TP ;
Adam, JC ;
Lettenmaier, DP .
NATURE, 2005, 438 (7066) :303-309
[7]   The State and Fate of Himalayan Glaciers [J].
Bolch, T. ;
Kulkarni, A. ;
Kaab, A. ;
Huggel, C. ;
Paul, F. ;
Cogley, J. G. ;
Frey, H. ;
Kargel, J. S. ;
Fujita, K. ;
Scheel, M. ;
Bajracharya, S. ;
Stoffel, M. .
SCIENCE, 2012, 336 (6079) :310-314
[8]   Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau [J].
Cheng, Guodong ;
Wu, Tonghua .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2007, 112 (F2)
[9]   Simulation of spatial variability in snow and frozen soil [J].
Cherkauer, KA ;
Lettenmaier, DP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[10]   Hydrologic effects of frozen soils in the upper Mississippi River basin [J].
Cherkauer, KA ;
Lettenmaier, DP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D16) :19599-19610