3D Objects Indexing Using Chebyshev Polynomial

被引:0
作者
Oulahrir, Y. [1 ]
Elmounchid, F. [1 ]
Hellam, S. [1 ]
Sadiq, A. [1 ]
Mbarki, S. [1 ]
机构
[1] Ibn Tofail Univ, Kenitra, Morocco
来源
PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2019, VOL 2 | 2020年 / 1070卷
关键词
3D object indexing; 3D shape descriptor; Chebyshev Polynomial; 3D object similarity; SERIES EXPANSION; RETRIEVAL;
D O I
10.1007/978-3-030-32523-7_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method for three-dimensional object indexing based on a new descriptor: Chebyshev Polynomial Descriptor (3D-CPD). For this end, we propose a numeric calculation of the coefficients of Chebyshev polynomial with maximum precision. The aim of this method is the search of similar 3D objects to a request object model and to minimize the processing time in the large database. Firstly we start by defining the new descriptor 3D-CPD using a new description of 3-D object. Then we define a new distance which will be tested and prove his efficiency in searching similar objects in the large databases in which we have objects with very various and important size.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 26 条
[1]   A Hidden Markov Model approach for appearance-based 3D object recognition [J].
Bicego, M ;
Castellani, U ;
Murino, V .
PATTERN RECOGNITION LETTERS, 2005, 26 (16) :2588-2599
[2]  
Boyd J. P., 2000, Chebyshev and Fourier spectral methods
[3]   Feature-based similarity search in 3D object databases [J].
Bustos, B ;
Keim, DA ;
Saupe, D ;
Schreck, T ;
Vranic, DV .
ACM COMPUTING SURVEYS, 2005, 37 (04) :345-387
[4]  
Byerly W.E., 1959, SPHERICAL HARMONICS, P195
[5]  
Cabral B., 1987, P ACM SIGGRAPH, P273
[6]  
D'Zmura M., 1991, Computational models of visual processing, P187
[7]  
Daoudi M, 2007, LECT NOTES COMPUT SC, V4877, P298
[8]   Human action recognition using similarity degree between postures and spectral learning [J].
Ding, Wenwen ;
Liu, Kai ;
Chen, Hao ;
Tang, Fengqin .
IET COMPUTER VISION, 2018, 12 (01) :110-117
[10]   AN EXTREMAL PROBLEM FOR POLYNOMIALS [J].
EREMENKO, A ;
LEMPERT, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (01) :191-193