Combining frequency-difference and ultrasound modulated electrical impedance tomography

被引:23
作者
Harrach, Bastian [1 ]
Lee, Eunjung [2 ]
Ullrich, Marcel [1 ]
机构
[1] Univ Stuttgart, Dept Math, Stuttgart, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
electrical impedance tomography; frequency-difference EIT; ultrasound modulated EIT; anomaly detection; monotonicity; localized potentials; COMPLETE ELECTRODE MODEL; INVERSE CONDUCTIVITY PROBLEM; FACTORIZATION METHOD; NUMERICAL IMPLEMENTATION; SHAPE-RECONSTRUCTION; ELLIPTIC PROBLEMS; INCLUSIONS; EIT; REGULARIZATION; JUSTIFICATION;
D O I
10.1088/0266-5611/31/9/095003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Electrical impedance tomography (EIT) is highly affected by modeling errors regarding electrode positions and the shape of the imaging domain. In this work, we propose a new inclusion detection technique that is completely independent of such errors. Our new approach is based on a combination of frequency-difference and ultrasound modulated EIT measurements.
引用
收藏
页数:25
相关论文
共 79 条
[1]  
Adler A., 2011, HDB MATH METHODS IMA, P599, DOI DOI 10.1007/978-0-387-92920-0
[2]   Electrical impedance tomography by elastic deformation [J].
Ammari, H. ;
Bonnetier, E. ;
Capdeboscq, Y. ;
Tanter, M. ;
Fink, M. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (06) :1557-1573
[3]   Resolution and stability analysis in acousto-electric imaging [J].
Ammari, Habib ;
Garnier, Josselin ;
Jing, Wenjia .
INVERSE PROBLEMS, 2012, 28 (08)
[4]   CAUCHY PROBLEM FOR ULTRASOUND-MODULATED EIT [J].
Bal, Guillaume .
ANALYSIS & PDE, 2013, 6 (04) :751-775
[5]   The Levenberg-Marquardt iteration for numerical inversion of the power density operator [J].
Bal, Guillaume ;
Naetar, Wolf ;
Scherzer, Otmar ;
Schotland, John .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2013, 21 (02) :265-280
[6]   APPLIED POTENTIAL TOMOGRAPHY [J].
BARBER, DC ;
BROWN, BH .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (09) :723-733
[7]   Bioimpedance tomography (Electrical impedance tomography) [J].
Bayford, R. H. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 :63-91
[8]  
Bonnetier E, 2014, IMPACT APPL MATH, P275
[9]   Electrical impedance tomography (vol 18, pg 99, 2002) [J].
Borcea, L .
INVERSE PROBLEMS, 2003, 19 (04) :997-998
[10]   Electrical impedance tomography [J].
Borcea, L .
INVERSE PROBLEMS, 2002, 18 (06) :R99-R136