The number of smallest parts in the partitions of n

被引:105
作者
Andrews, George E. [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 624卷
基金
美国国家科学基金会;
关键词
D O I
10.1515/CRELLE.2008.083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We denote by sptd(n) the total number of appearances of the smallest part in each integer partition of n. We shall relate sptd(n) to the Atkin-Garvan moments of ranks, and we shall prove that 5 vertical bar spt(5n + 4), 7 vertical bar spt(7n + 5) and 13 vertical bar spt(13n + 6).
引用
收藏
页码:133 / 142
页数:10
相关论文
共 12 条
[1]   Partition identities involving gaps and weights [J].
Alladi, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5001-5019
[2]   Partition identities involving gaps and weights - II [J].
Alladi, K .
RAMANUJAN JOURNAL, 1998, 2 (1-2) :21-37
[3]  
ALLADI K, 1996, ANAL NUMBER THEORY, V1
[4]  
ANDREWS G, 1998, ENCY MATH APPL, V2
[5]  
ANDREWS GE, INVENT MATH IN PRESS
[6]  
Atkin A.O.L., 1954, Proc. Lond. Math. Soc., V4, P84, DOI DOI 10.1112/PLMS/S3-4.1.84
[7]  
Atkin A.O.L., 1958, T AM MATH SOC, V89, P184
[8]   Relations between the ranks and cranks of partitions [J].
Atkin, AOL ;
Garvan, FG .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :343-366
[9]  
Dyson F.J., 1944, Eureka, V8, P10
[10]  
FOKKINK R, 1995, AM MATH MONTHLY, V102, P345