Superoscillation in speckle patterns

被引:95
作者
Dennis, Mark R. [1 ]
Hamilton, Alasdair C. [2 ]
Courtial, Johannes [2 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
10.1364/OL.33.002976
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Waves are superoscillatory where their local phase gradient exceeds the maximum wavenumber in their Fourier spectrum. We consider the superoscillatory area fraction of random optical speckle patterns. This follows from the joint probability density function of intensity and phase gradient for isotropic Gaussian random wave superpositions. Strikingly, this fraction is 1/3 when all the waves in the two-dimensional superposition have the same wavenumber. The fraction is 1/5 for a disk spectrum. Although these superoscillations are weak compared with optical fields with designed superoscillations, they are more stable on paraxial propagation. (C) 2008 Optical Society of America
引用
收藏
页码:2976 / 2978
页数:3
相关论文
共 20 条
  • [1] Aharonov Y, 2005, QUANTUM PARADOXES: QUANTUM THEORY FOR THE PERPLEXED, P161
  • [2] BARANOVA NB, 1981, JETP LETT+, V33, P195
  • [3] Berry M.V., 1994, QUANTUM COHERENCE RE, P55
  • [4] DISRUPTION OF WAVEFRONTS - STATISTICS OF DISLOCATIONS IN INCOHERENT GAUSSIAN RANDOM WAVES
    BERRY, MV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (01): : 27 - 37
  • [5] Phase singularities in isotropic random waves
    Berry, MV
    Dennis, MR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2059 - 2079
  • [6] Evolution of quantum superoscillations and optical superresolution without evanescent waves
    Berry, MV
    Popescu, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 6965 - 6977
  • [7] BERRY MV, J PHYS A IN PRESS
  • [8] EBELING KJ, 1977, PHYS ACOUSTICS PRINC, V17, P233
  • [9] Goodman J., 2000, Statistical Optics
  • [10] Goodman J. W., 2007, Speckle Phenomena in Optics: Theory and Applications