A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras

被引:22
作者
Chari, Vyjayanthi [1 ]
Greenstein, Jacob [1 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Koszul algebras; Current algebras; Algebras of invariants; CATEGORIES; MODULES;
D O I
10.1016/j.aim.2008.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a finite-dimensional simple Lie algebra and let S be the locally finite part of the algebra of invariants (End(C) V circle times S(g))(g) where V is the direct sum of all simple finite-dirnensional modules for g and S(g) is the symmetric algebra of g. Given an integral weight xi, let Psi = Psi(xi) be the subset of roots which have maximal scalar product with xi. Given a dominant integral weight lambda and xi such that Psi is a subset of the positive roots we construct a finite-dimensional subalgebra S-Psi(g)(<=Psi lambda) of S-g and prove that the algebra is Koszul of global dimension at most the cardinality of Psi. Using this we construct naturally an infinite-dimensional non-commutative Koszul algebra of global dimension equal to the cardinality of Psi. The results and the methods are motivated by the study of the category of finite-dimensional representations of the affine and quantum affine algebras. (C) 2008 Elsevier Inc. All rights reserved,
引用
收藏
页码:1193 / 1221
页数:29
相关论文
共 50 条
  • [32] Weakly Cohen Macaulay posets and a class of finite-dimensional graded quadratic algebras
    Kloefkorn, Tyler
    JOURNAL OF ALGEBRA, 2017, 487 : 138 - 160
  • [33] Poles of finite-dimensional representations of Yangians
    Gautam, Sachin
    Wendlandt, Curtis
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (01):
  • [34] On Minimal Faithful Representations of a Class of Nilpotent Lie Algebras
    Alejandra Alvarez, Maria
    Rojas, Nadina
    FILOMAT, 2021, 35 (05) : 1671 - 1686
  • [35] Finite-dimensional representations of map superalgebras
    Calixto, Lucas
    Macedo, Tiago
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 104 - 130
  • [36] REPRESENTATIONS OF LOOP KAC-MOODY LIE ALGEBRAS
    Rao, S. Eswara
    Futorny, Vyacheslav
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3775 - 3792
  • [37] Integrable representations for toroidal extended affine Lie algebras
    Chen, Fulin
    Li, Zhiqiang
    Tan, Shaobin
    JOURNAL OF ALGEBRA, 2019, 519 : 228 - 252
  • [38] REPRESENTATIONS OF LIE ALGEBRAS OF VECTOR FIELDS ON AFFINE VARIETIES
    Billig, Yuly
    Futorny, Vyacheslav
    Nilsson, Jonathan
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 233 (01) : 379 - 399
  • [39] Some Combinatorial Coincidences for Standard Representations of Affine Lie Algebras
    Primc, Mirko
    AFFINE, VERTEX AND W-ALGEBRAS, 2019, 37 : 203 - 218
  • [40] Z-graded oscillator representations of symplectic Lie algebras
    Luo, Cuiling
    Xu, Xiaoping
    JOURNAL OF ALGEBRA, 2014, 403 : 401 - 425