共 50 条
A family of Koszul algebras arising from finite-dimensional representations of simple Lie algebras
被引:22
|作者:
Chari, Vyjayanthi
[1
]
Greenstein, Jacob
[1
]
机构:
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
基金:
美国国家科学基金会;
关键词:
Koszul algebras;
Current algebras;
Algebras of invariants;
CATEGORIES;
MODULES;
D O I:
10.1016/j.aim.2008.11.007
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let g be a finite-dimensional simple Lie algebra and let S be the locally finite part of the algebra of invariants (End(C) V circle times S(g))(g) where V is the direct sum of all simple finite-dirnensional modules for g and S(g) is the symmetric algebra of g. Given an integral weight xi, let Psi = Psi(xi) be the subset of roots which have maximal scalar product with xi. Given a dominant integral weight lambda and xi such that Psi is a subset of the positive roots we construct a finite-dimensional subalgebra S-Psi(g)(<=Psi lambda) of S-g and prove that the algebra is Koszul of global dimension at most the cardinality of Psi. Using this we construct naturally an infinite-dimensional non-commutative Koszul algebra of global dimension equal to the cardinality of Psi. The results and the methods are motivated by the study of the category of finite-dimensional representations of the affine and quantum affine algebras. (C) 2008 Elsevier Inc. All rights reserved,
引用
收藏
页码:1193 / 1221
页数:29
相关论文