Bounds on minimum distance for linear codes over GF(5)

被引:8
作者
Daskalov, RN [1 ]
Gulliver, TA
机构
[1] Tech Univ, Dept Math, BG-5300 Gabrovo, Bulgaria
[2] Univ Canberra, Dept Elect & Elect Engn, Christchurch, New Zealand
关键词
quasi-cyclic codes; linear codes over GF(5);
D O I
10.1007/s002000050117
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let [n, k, d; q]-codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q), Let d(5)(n, k) be the maximum possible minimum Hamming distance of a linear [n, k, d; 5]-code for given values of n and k. In this paper, forty four new linear codes over GF(5) are constructed and a table of d5 (n, k) k less than or equal to 8, n less than or equal to 100 is presented.
引用
收藏
页码:547 / 558
页数:12
相关论文
共 13 条
[1]   Optimal linear codes of dimension 4 over F-5 [J].
Boukliev, I ;
Kapralov, S ;
Maruta, T ;
Fukui, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) :308-313
[2]   THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES [J].
BROUWER, AE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :677-680
[3]  
BROUWER AE, LINEAR CODE BOUND SE
[4]   New good quasi-cyclic ternary and quaternary linear codes [J].
Daskalov, RN ;
Gulliver, TA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (05) :1647-1650
[5]  
DASKALOV RN, 1994, P 4 INT WORKSH ALG C, P74
[6]  
DODUNEKOV SM, IN PRESS DISC MATH
[7]  
Greenough P. P., 1992, Designs, Codes and Cryptography, V2, P81, DOI 10.1007/BF00124211
[8]  
Gulliver T. A., 1996, Designs, Codes and Cryptography, V7, P223, DOI 10.1007/BF00124513
[9]   SOME BEST RATE 1/P AND RATE (P-1)/P SYSTEMATIC QUASI-CYCLIC CODES OVER GF(3) AND GF(4) [J].
GULLIVER, TA ;
BHARGAVA, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (04) :1369-1374
[10]  
GULLIVER TA, 1996, LECT NOTES COMPUTER, V1133, P28