VOLUME ESTIMATES FOR KAHLER-EINSTEIN METRICS AND RIGIDITY OF COMPLEX STRUCTURES

被引:0
作者
Chen, X. -X. [1 ]
Donaldson, S. K. [2 ]
机构
[1] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
RICCI CURVATURE; MANIFOLDS; SINGULARITIES; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper extends our earlier results to higher dimensions using a different approach, based on the rigidity of complex structures on certain domains. We prove a "low energy" result in all dimensions, in the sense that if normalized energy in a large ball is small enough, then the normalized energy in any interior ball must also be small.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 10 条
[1]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[2]   The Cauchy-Riemann equations on product domains [J].
Chakrabarti, Debraj ;
Shaw, Mei-Chi .
MATHEMATISCHE ANNALEN, 2011, 349 (04) :977-998
[3]   Integral bounds on curvature, elliptic estimates and rectifiability of singular sets [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :20-72
[4]   On the singularities of spaces with bounded Ricci curvature [J].
Cheeger, J ;
Colding, TH ;
Tian, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (05) :873-914
[5]  
Cheeger J., INVENTIONES IN PRESS
[6]  
Chen X.X., ARXIV11040270
[7]  
Hamilton R.S., 1977, DIFFERENTIAL GEOMETR, V12, P1
[8]   HARMONIC INTEGRALS ON STRONGLY PSEUDO-CONVEX MANIFOLDS .1 [J].
KOHN, JJ .
ANNALS OF MATHEMATICS, 1963, 78 (01) :112-&
[9]   RIGIDITY OF QUOTIENT SINGULARITIES [J].
SCHLESSINGER, M .
INVENTIONES MATHEMATICAE, 1971, 14 (01) :17-+
[10]  
TIAN G, 1992, J DIFFER GEOM, V35, P535