Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway

被引:29
|
作者
Yan, Yu-Hui [1 ]
Li, Shao-Heng [1 ]
Gao, Zhong [2 ]
Zou, Sa-feng [2 ]
Li, Hong-yan [1 ]
Tao, Zhen-yu [1 ]
Song, Jie [1 ]
Yang, Jing-xian [1 ]
机构
[1] Liaoning Univ Tradit Chinese Med, Sch Pharm, Dalian 116600, Peoples R China
[2] Dalian Municipal Cent Hosp, Dept Rehabil, Dept Intervent Therapy, Dalian 116033, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone marrow-derived neural stem cells; Proliferation; Cholinergic neurons; Alzheimer's disease; Neurotrophin-3; Notch signaling pathway; ALZHEIMERS-DISEASE; PROGENITOR CELLS; IN-VITRO; GROWTH-FACTOR; NERVOUS-SYSTEM; SELF-RENEWAL; MOUSE MODEL; BRAIN; SURVIVAL; THERAPY;
D O I
10.1016/j.lfs.2016.10.004
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aims: Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. Main methods: BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. Key findings: We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. Significance: Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 138
页数:8
相关论文
共 50 条
  • [21] Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys
    Ying Qi
    FengYan Zhang
    Ge Song
    XueRong Sun
    RuZhang Jiang
    MengFei Chen
    Jian Ge
    Science China Life Sciences, 2010, 53 : 573 - 580
  • [22] Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys
    QI YingZHANG FengYanSONG GeSUN XueRongJIANG RuZhangCHEN MengFei GE Jian State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yatsen UniversityGuangzhou ChinaDepartment of Ophthalmologythe First Affiliated HospitalZhengzhou UniversityZhengzhou China
    Science China(Life Sciences), 2010, 53 (05) : 573 - 580
  • [23] Jujuboside a promotes proliferation and neuronal differentiation of APPswe-overexpressing neural stem cells by activating Wnt/β-catenin signaling pathway
    Wang, Cui
    Chen, Ji-Cong
    Xiao, Hong-He
    Kong, Liang
    Zhao, Yu-Meng
    Tian, Yu
    Li, He
    Tian, Jin-Ming
    Cui, Lin
    Wen, Cai-Ming
    Shi, Yi-Jun
    Yang, Jing-Xian
    Shang, De-Jing
    NEUROSCIENCE LETTERS, 2022, 772
  • [24] Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells
    Lu, ZZ
    Wu, ZZ
    Zhang, QW
    Wang, H
    Jia, XX
    Duan, HF
    Wang, LS
    CHINESE SCIENCE BULLETIN, 2004, 49 (08): : 815 - 818
  • [26] Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells
    He, Ying
    Zou, Lijin
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 18 (03) : 1884 - 1890
  • [27] Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells
    Shang, Yan-chang
    Wang, Shu-hui
    Xiong, Fu
    Zhao, Cui-ping
    Peng, Fu-ning
    Feng, Shan-wei
    Li, Mei-shan
    Li, Yong
    Zhang, Cheng
    ACTA PHARMACOLOGICA SINICA, 2007, 28 (11) : 1761 - 1774
  • [28] CCN3/NOV Regulates Proliferation and Neuronal Differentiation in Mouse Hippocampal Neural Stem Cells via the Activation of the Notch/PTEN/AKT Pathway
    Luan, Yan
    Zhang, Hanyue
    Ma, Kaige
    Liu, Yingfei
    Lu, Haixia
    Chen, Xinlin
    Liu, Yong
    Zhang, Zhichao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [29] Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells
    Yan-chang Shang
    Shu-hui Wang
    Fu Xiong
    Cui-ping Zhao
    Fu-ning Peng
    Shan-wei Feng
    Mei-shan Li
    Yong Li
    Cheng Zhang
    Acta Pharmacologica Sinica, 2007, 28 : 1761 - 1774
  • [30] Wnt3a signaling promotes proliferation,myogenic differentiation,and migration of rat bone marrow mesenchymal stem cells
    Yan-chang SHANG~(2
    ~4 Department of Neurology
    ActaPharmacologicaSinica, 2007, (11) : 1761 - 1774