LIMIT THEOREMS FOR QUANTUM WALKS DRIVEN BY MANY COINS

被引:28
作者
Segawa, Etsuo [1 ]
Konno, Norio [1 ]
机构
[1] Yokohama Natl Univ, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
关键词
Quantum walks; limit theorem; many coins;
D O I
10.1142/S0219749908004456
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We obtain some rigorous results on limit theorems for quantum walks driven by many coins introduced by Brun et al. in the long time limit. The results imply that whether the behavior of a particle is quantum or classical depends on the three factors: the initial qubit, the number of coins M, d = [t/M], where t is time step. Our main theorem shows that we can see a transition from classical behavior to quantum one for a class of three factors.
引用
收藏
页码:1231 / 1243
页数:13
相关论文
共 50 条
  • [41] AN ALGEBRAIC STRUCTURE FOR ONE-DIMENSIONAL QUANTUM WALKS AND A NEW PROOF OF THE WEAK LIMIT THEOREM
    Tate, Tatsuya
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2013, 16 (02)
  • [42] Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks
    Fillman, Jake
    Ong, Darren C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) : 5107 - 5143
  • [43] Sedentariness in quantum walks
    Monterde, Hermie
    QUANTUM INFORMATION PROCESSING, 2023, 22 (07)
  • [44] Quantum Walks on Hypergraphs
    Przemysław Sadowski
    Łukasz Pawela
    Paulina Lewandowska
    Ryszard Kukulski
    International Journal of Theoretical Physics, 2019, 58 : 3382 - 3393
  • [45] Quantum Walks on Hypergraphs
    Sadowski, Przemyslaw
    Pawela, Lukasz
    Lewandowska, Pauline
    Kukulski, Ryszard
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) : 3382 - 3393
  • [46] Trojan Quantum Walks
    Ghizoni, Henrique S.
    Amorim, Edgard P. M.
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (02) : 168 - 172
  • [47] Quantum walks on embeddings
    Hanmeng Zhan
    Journal of Algebraic Combinatorics, 2021, 53 : 1187 - 1213
  • [48] Quaternionic quantum walks
    Konno N.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (1) : 63 - 76
  • [49] Sedentariness in quantum walks
    Hermie Monterde
    Quantum Information Processing, 22
  • [50] Trojan Quantum Walks
    Henrique S. Ghizoni
    Edgard P. M. Amorim
    Brazilian Journal of Physics, 2019, 49 : 168 - 172