Combining Multiple Observational Data Sources to Estimate Causal Effects

被引:39
|
作者
Yang, Shu [1 ]
Ding, Peng [2 ]
机构
[1] North Carolina State Univ, Dept Stat, 2311 Stinson Dr Campus Box 8203, Raleigh, NC 27695 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Calibration; Causal inference; Inverse probability weighting; Missing confounder; Two-phase sampling; PROPENSITY SCORE CALIBRATION; DOUBLY ROBUST ESTIMATION; LARGE-SAMPLE PROPERTIES; AUXILIARY INFORMATION; MISSING CONFOUNDERS; MATCHING ESTIMATORS; VALIDATION DATA; REGRESSION; INFERENCE; 2-PHASE;
D O I
10.1080/01621459.2019.1609973
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The era of big data has witnessed an increasing availability of multiple data sources for statistical analyses. We consider estimation of causal effects combining big main data with unmeasured confounders and smaller validation data withon these confounders. Under the unconfoundedness assumption with completely observed confounders, the smaller validation data allow for constructing consistent estimators for causal effects, but the big main data can only give error-prone estimators in general. However, by leveraging the information in the big main data in a principled way, we can improve the estimation efficiencies yet preserve the consistencies of the initial estimators based solely on the validation data. Our framework applies to asymptotically normal estimators, including the commonly used regression imputation, weighting, and matching estimators, and does not require a correct specification of the model relating the unmeasured confounders to the observed variables. We also propose appropriate bootstrap procedures, which makes our method straightforward to implement using software routines for existing estimators.for this article are available online.
引用
收藏
页码:1540 / 1554
页数:15
相关论文
共 50 条
  • [31] Propensity scores in the design of observational studies for causal effects
    Rosenbaum, P. R.
    Rubin, D. B.
    BIOMETRIKA, 2023, 110 (01) : 1 - 13
  • [32] Combining experimental and observational data through a power likelihood
    Lin, Xi
    Tarp, Jens Magelund
    Evans, Robin J.
    BIOMETRICS, 2025, 81 (01)
  • [33] Estimation of Causal Effects with Multiple Treatments: A Review and New Ideas
    Lopez, Michael J.
    Gutman, Roee
    STATISTICAL SCIENCE, 2017, 32 (03) : 432 - 454
  • [34] Causal Inference Methods for Intergenerational Research Using Observational Data
    Frach, Leonard
    Jami, Eshim S. S.
    McAdams, Tom A. A.
    Dudbridge, Frank
    Pingault, Jean-Baptiste
    PSYCHOLOGICAL REVIEW, 2023, 130 (06) : 1688 - 1703
  • [35] Causal Relationships in Longitudinal Observational Data: An Integrative Modeling Approach
    Biazoli Jr, Claudinei E.
    Sato, Joao R.
    Pluess, Michael
    PSYCHOLOGICAL METHODS, 2024, 29 (06) : 1132 - 1147
  • [36] Random Forests Approach for Causal Inference with Clustered Observational Data
    Suk, Youmi
    Kang, Hyunseung
    Kim, Jee-Seon
    MULTIVARIATE BEHAVIORAL RESEARCH, 2021, 56 (06) : 829 - 852
  • [37] Estimating causal effects in observational studies for survival data with a cure fraction using propensity score adjustment
    Wang, Ziwen
    Wang, Chenguang
    Wang, Xiaoguang
    BIOMETRICAL JOURNAL, 2023, 65 (08)
  • [38] Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
    Zawadzki, Roy S. D.
    Grill, Joshua D. L.
    Gillen, Daniel L.
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [39] Bayesian inference of causal effects from observational data in Gaussian graphical models
    Castelletti, Federico
    Consonni, Guido
    BIOMETRICS, 2021, 77 (01) : 136 - 149
  • [40] Estimation of causal effects in observational studies with interference between units
    Lundin, Mathias
    Karlsson, Maria
    STATISTICAL METHODS AND APPLICATIONS, 2014, 23 (03): : 417 - 433