Neural Tangent Kernel Analysis of Deep Narrow Neural Networks

被引:0
作者
Lee, Jongmin [1 ]
Choi, Joo Young [1 ]
Ryu, Ernest K. [1 ]
No, Albert [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[2] Hongik Univ, Dept Elect & Elect Engn, Seoul, South Korea
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162 | 2022年
基金
新加坡国家研究基金会;
关键词
APPROXIMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The tremendous recent progress in analyzing the training dynamics of overparameterized neural networks has primarily focused on wide networks and therefore does not sufficiently address the role of depth in deep learning. In this work, we present the first trainability guarantee of infinitely deep but narrow neural networks. We study the infinitedepth limit of a multilayer perceptron (MLP) with a specific initialization and establish a trainability guarantee using the NTK theory. We then extend the analysis to an infinitely deep convolutional neural network (CNN) and perform brief experiments.
引用
收藏
页数:70
相关论文
共 76 条
[1]  
Allen-Zhu Z, 2019, PR MACH LEARN RES, V97
[2]  
[Anonymous], 2019, INT C MACH LEARN
[3]  
[Anonymous], 2018, INT C LEARN REPR, DOI DOI 10.1002/PROT.25414
[4]  
[Anonymous], 2015, P INT C MACHINE LEAR
[5]  
Arora S., 2019, NEURAL INFORM PROCES, V2019b
[6]  
Arora Sanjeev, 2019, P INT C LEARN REPR
[7]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[8]  
Bietti Alberto, 2019, NEURAL INFORM PROCES
[9]  
Chen R. T. Q., 2018, Neural Information Processing Systems (NeurIPS)
[10]  
Chen Z., 2020, NEURAL INFORM PROCES